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Abstract Arguably programming involves design: computational logic - the pro-
gram - is constantly reorganized to keep complexity manageable and provide for
current and future coding activities to be feasible. However, design practices have
gained less attention in the field of programming, even though decades of research
on design have led to a large body of knowledge about theories, methods, and best
practices. This chapter reports on first results of our research efforts to transfer and
apply design knowledge to programming activities. We improved tool support for
software developers in two respects, both of which are based on key concepts in
design practices: continuous feedback and ease of exploration.

1 Introduction

Agile software development and Design Thinking build on similar values and prin-
ciples. Agile processes such as Extreme Programming or Scrum are based on short
iterations. This approach has many advantages. It results in regular delivery of value
to the customer and it enforces developers to constantly face feasibility questions,
resulting in feedback on different aspects. Agile processes assume co-evolution of
problem understanding and the implementation of a proper solution.

Techniques and values of Design Thinking can be a useful supplement to Ag-
ile principles [23]. Both Design Thinking and Agile processes value feedback and
encourage team members to interact closely with each other and prospective users.
They also emphasize the importance of directness and doing – being continuously
involved and in dialog with the product to be created.

Efforts to bring Design Thinking to the development of software systems should
not be limited to the domain of user interfaces and end-user interaction, but needs
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Fig. 1 Learning from Design Thinking.

to be carried far beyond that (Fig. 1). Developers are constantly involved in design
activities while working on a software system. This includes, for example, the se-
lection and representation of domain concepts and the organization of programs in
logical units and code entities. Main goals of these design activities are conceptual
integrity and ease of understanding. These characteristics are important as software
systems are improved and enhanced over time. Requirements change if new func-
tionality needs to be supported and existing functionality must be modified and up-
dated. Every such change builds on the system’s current design. New features and
modified requirements can be realized more easily, if the system’s design features
simplicity and ease of understanding. Thus, keeping the software system as simple
as possible is an important design goal. Following this line of thought, programming
can be regarded as a design discipline that has programmers as affected users of the
design outcome.

While programming arguably involves design, knowledge about design has
gained less attention in the field of programming. Driven by pure curiosity and
also economical interest, the nature of design has been studied since decades [10].
Design-related aspects has been investigated from various perspectives ranging from
social sciences over artificial intelligence to brain research, considering design as a
collaborative endeavor, as a problem-solving activity, as a conversation with materi-
als, or as hard work towards creative leaps, amongst other. Efforts are put to scientise
design [10] to allow for better reflection on design activities and to develop theo-
ries and methods that may provide guidance if needed. All this investigations led
to a huge body of knowledge about design, the application of which should not be
limited to interface design and end-user interaction.
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We investigate the transfer and application of design knowledge to programming
activities and the design of software systems. To take advantage of experience from
the design domain, software developers need to be provided with both methods and
tools that allow them to work and interact with their materials and artifacts as de-
signers do with theirs. We expect that the transfer of such methods and the provision
of accompanying tools allows developers to work more efficiently on design tasks.

In this chapter, we present our first results of this research effort. We applied two
key concepts of design practice to improve on development support for program-
ming activities, which are described in the next section and the section after next
respectively. First, we present continuous selective testing, our approach to provide
for continuous feedback on current coding activities and thus allows for instantly as-
sessing their effect. Second, our interactive approach to run-time analysis provides
for immediate access to visualizations of run-time information, which arguably sup-
port understanding abstractions.

2 Continuous Feedback on Programming Activities

A manual and explicit activity, the frequent selection and execution of tests require
considerable discipline. Our approach automatically derives a subset of tests based
on actual modifications to the code base at hand, then continuously executes them
transparently in the background, and so supports developers in instantly assessing
the effect of their coding activities with respect to the overall set of unit tests to
be passed. We apply techniques of selective regression testing, mainly relying on
dynamic analysis. By taking advantage of the internal program representation avail-
able in IDEs, we do not need to rely on expensive comparisons of different program
versions to detect modified code entities.

2.1 Motivation

Test-driven development [5] (TDD) is a cornerstone of agile software development
methodologies such as Extreme Programming [19] (XP). This technique suggests
writing test cases before the code they are intended to cover. Written first, tests
serve multiple purposes. First, they represent a specification for the system to be
developed. Next, they document the system and help other developers in compre-
hending the system. Finally, they ensure that every single change violating one of
the required features described in the executable form of a test is reported.

While testing is an important part of regular development activities, Integrated
Development Environments (IDEs) have little support for selecting and (re-) exe-
cuting tests relevant with respect to modifications applied to the system under de-
velopment [16].
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There are a few approaches that support (re-) running the test suite automatically
every time a file is saved in the IDE [27, 16]. However, test selection as such is
traditionally not performed: it is always the complete test suite that is run, including
irrelevant tests, leading to an execution overhead that is larger than it actually needs
to be.

For that reason, developers often manually select a few tests that seem appro-
priate, run them explicitly, and wait for feedback. The manual, regular, and explicit
selection and execution of tests requires considerable discipline. Moreover, success
is guaranteed only if no relevant test cases are omitted in the selection. A solution
that automatically selects test cases to be executed in the background based on the
applied changes to source code is preferable.

Approaches to test case selection are established: Selective regression testing [24]
has long been a subject of research. Selective regression testing is concerned with
reducing the set of tests that need to be executed to detect failures caused by recent
modifications to the code base. However, researchers have not yet investigated the
potential of integrating this technique into an IDE and having selected tests execute
continuously in the background.

We suggest selecting and executing tests automatically whenever the code status
demands this. More precisely, it would be desirable to have support for TDD that,
whenever source code is changed, automatically executes exactly those tests that are
affected by the actual modification, giving developers instant feed-back on whether
the applied change breaks something or not.

In this section, we describe continuous selective testing (CST) and present an
implementation thereof in Squeak Small-talk1 [18]. Using an implementation of the
suggested approach, developers will be supported as follows:

• Sets of relevant tests are selected based on dynamic analysis during the regular
execution of tests,

• Relevant tests are executed continuously in the background after every modifica-
tion to the code base,

• Developers are instantly informed about places in code that, resulting from an
applied change, are no longer covered by tests,

• The introduction of new defects is made apparent immediately, which in turn lets
developers focus on problems right away.

With that, our approach significantly improves on the way IDE tools provide imme-
diate feedback in a development process adopting TDD.

The main contributions of this work are as follows:

• We present continuous selective testing as an approach relieving developers from
the burden to select and run tests explicitly,

• We describe how test case selection in general can benefit from the internal pro-
gram representation already available in IDEs and how differencing of two ver-
sions of a program can be avoided,

1
www.squeak.org
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• We describe our approach to test case selection based on dynamic analysis, be-
ing not limited to statically-typed languages.

The remainder of this section is organized as follows. First we summarize TDD
and state of the art in tool support. Afterwards we motivate the need for improve-
ment and describe our proposed CST approach.2

2.2 Background

We briefly introduce the terms and concepts of TDD. We then dis-cuss current prac-
tices of developing tests and application code in accordance with TDD and point out
the need for better tool support. Afterwards, we introduce the concepts of regression
test selection and discuss current approaches.

The Three Phases of Test-driven Development

Test-driven development distinguishes three phases of development [5]:

• Red Tests are written that specify new requirements on the system in an exe-
cutable manner. When these new tests are run for the first time, failures or errors
occur, as the system does not yet support the new requirements. An important
guideline is to avoid writing application code if there is no test case that fails.

• Green Developers enhance the code base to make the failed test “green”, i. e., run
successfully. It is recommended to add only functionality that is essential to the
test in question. A successful test signals that the developer is done implementing
the new requirement. Note that it might happen that the system already fulfills a
newly defined requirement, without adding new code.

• Refactor The developer refactors towards the simplest design they can imagine.
By definition of refactoring [11], new functionality must not be added during
this phase. The tests can ensure that all required and specified features work
after a refactoring. Running tests after each and every little change helps to avoid
breaking features and provides instant feedback.

We can observe that tests and the regular execution of tests play an important role
when developers employ the principles of TDD.

Tool Support for Test-driven Development

Best practices in working with tests suggest to make only small changes and run
tests immediately afterwards to get feedback. This suggestion is based, amongst
others, on the following observations:

2 The evaluation of CST is described in the original paper [29].
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• Implementing new application functionality is a very complex activity. As every
single step is inherently fault-prone, regular feedback is essential for detecting
faults.

• Modifying source code without breaking existing functionality is also difficult.
Adapting source code to new requirements or refactoring source code to a simpler
design requires very detailed understanding, which to acquire is hard since source
code abstracts from concrete execution paths. Having tests covering all parts of
the respective code entities and running these tests regularly helps to detect faults
early.

• The more steps are passed without getting feedback, the more difficult locat-
ing the source of a fault becomes. When a couple of source code entities are
changed without running tests, and one ore more tests fail later on, isolating the
modification that has caused the failure is not straightforward. Typically, devel-
opers are unaware of the complete set of modifications done before running the
tests. Moreover, multiple failures might have different causes and combinations
of modifications might lead to completely unexpected behavior. To locate the
defects, developers can revert modifications step by step or debug the current
version. Both ways are tedious and time-consuming.

Running tests often and regularly helps developers to detect faults early, reduces
the time required to localize defects, and gives confidence for the next adaptions and
refactorings. However, running tests as often and regularly as suggested requires
much discipline.

The necessary discipline is sometimes hard to bring up, for apprentices as well
as experts. It is all too easy to ignore TDD theory, though well-understood and
accepted, and continue modifying code without running tests. It is not necessarily
only external factors, such as project schedules, that influence such decisions, but
also internal ones like the strong will to finish a task. These aspects contradict with
the required discipline.

Another issue with the theory of testing and test-first development is the im-
plicitness of the relationship between test cases and application code they cover.
When code is refactored or new features are implemented, existing code has to be
modified. However, while developers are aware of recently implemented tests, they
cannot know the set of all tests relying on a particular method. Hence, developers do
not know the set of tests to be executed after a modification of a particular method.
Consequently, all tests should be run after each modification, which is, however, in-
creasingly time-consuming as projects grow. As a result of this, developers run only
some tests regularly and the suite of tests is rarely executed, e. g., during integration
builds.

Both aspects discussed above, the implicitness of the relationship between test
cases and application code as well as the discipline required to run tests after each
modification, question the usefulness of tests and test-first development. Our work
provides tool support for TDD that alleviates these limitations and strengthens the
benefits of testing.
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2.3 Continuous Test Queuing, Selecting, and (Re-)Executing

In this subsection, we describe our approach called continuous selective testing
(CST). It enables the continuous execution of selected tests directly after code mod-
ifications. Such automation relieves developers from the burden of executing tests
manually. Selecting a subset of all tests and omitting those that cannot reveal faults
reduces execution time and helps to provide feedback instantly. We have imple-
mented the suggested approach in Squeak Smalltalk.

In the following, we will first introduce the concepts of regression test selection
and then present the use of the IDE’s program representation to detect and handle
modifications to the code base. After that, we describe the queuing of tests and the
selection and (re-)execution of tests according to the modification at hand. Finally,
we present our extensions to the IDE providing instant feedback on test results.

Regression Test Selection

Regression testing refers to the practice of validating modified software; in partic-
ular, asserting that applied changes do not affect the software adversely [15]. The
simplest approach to regression testing is to reuse the test suite used to exercise the
previous version of the software. Fully running a large test suite can be unnecessar-
ily costly, e. g., if only a few parts of the system were changed.

A technique to reduce the number of tests is regression test selection. It selects
tests that have to be re-run to reveal a fault resulting from a particular change. Se-
lecting an optimal set of tests is, however, generally inefficient [24]. Still, the set of
tests traversing modifications can be computed efficiently. This set of modification-
traversing tests can be considered a superset of the fault-revealing tests when the
Proper Regression Testing Assumption [24] holds (P refers to a program and P0

refers to the modified version of this program):

When P0 is tested with t, we hold all factors that might influence the output of P0, except for
the code in P0, constant with respect to their states when we tested P with t.

A regression test selection technique is furthermore considered safe if it ensures
to not omit tests revealing faults [15]. Several safe techniques have been proposed
for purely procedural (e. g., [2, 8, 25]) as well as for object-oriented programming
languages (e. g., [26, 15]). Object-oriented programming is special as inheritance,
polymorphism and thus late-binding have to be considered.

The most efficient and safe test selection technique is based on detecting mod-
ified code entities, such as functions or storage locations [24]. This technique was
first implemented in TestTube [8] for software written in C. The technique is based
on dynamic analysis [3]; test coverage information are recorded during each test
run. For a new version of a software, the set of modified code entities can be de-
tected. Based on coverage information, the technique selects and re-executes all
tests that exercised the modified code entities in the previous version of the soft-
ware. For object-oriented languages, the modified entity selection technique requires
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additional considerations due to language features such as inheritance and polymor-
phism enabling late binding.

Our approach, CST, is based on this technique of detecting modified code en-
tities. CST records coverage information and selects tests on a method level. This
procedure may select tests that do not traverse the modifications, because a test
might only traverse unmodified parts of a method, for example. However, tracing
on a more fine-grained level is much more expensive and does not pay off unless
methods contain many control blocks [6].

Propagating Modifications to the Code Base

IDEExternal 

Files

.java.java.java

.java.java.class

IDE

Test Tools

Coverage

Data

Test Runner / 

Coverage Analysis

Test Selection

AST /

Meta Objects Editor 

Browser

Test Tools (Coverage, 

Selection, Execution)
+

Fig. 2 The left-hand side shows a traditional setup where test selection tools and IDE work inde-
pendently of each other. The right-hand side depicts CST integrating test selection into the IDE
and taking advantage of the internal program representation.

Most approaches to test selection are based on comparing the new with an earlier
program version to detect change entities. Our approach takes advantage of an IDE’s
internal program representation. Fig. 2, on the left, depicts the setup of traditional
approaches. IDE and test tools are not integrated and do not work together, each
of them works rather separately on external program representations. In this setup,
however, a test selection technique requires a comparison of program versions to
detect modifications between two versions of a software. There exist differencing
concepts and tool for both source code [1, 15] and byte code [17].

We suggest to better integrate the tools for testing and test selection into the
IDE as depicted on the right of Fig. 2. Every modification applied to the code base
can produce an event notifying the IDE about the respective change. Using this
notification mechanism, the test tools can process each modification to the code
base. The tools are now able, for example, to automatically select and re-execute a
set of test cases as necessary for the modification applied.

The set of events used to propagate code modifications to IDE tools has to be
designed for the particular programming language and IDE, respecting the features
of the language and the architecture of the IDE. In Squeak Smalltalk, for exam-
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ple, there are basically two operations to create or modify code objects. Sending
a subclass-message to a class c creates a new or modifies an already existing sub-
class of class c. Sending the compile: message to a class object allows to compile
a source code text of a method and puts it in the method dictionary of the corre-
sponding class. Based on the effects of this two operations, the following change
events can be defined for the Smalltalk [13] programming language, which is a
rather simple language and does, for example, not provide any visibility modifiers;
class added, class removed, superclass changed, instance variable added, instance
variable removed, method added, method modified, and method removed. Note that
class-specific (“static”) state or behavior do not require special treatment as classes
are also normal objects whose state and behavior are defined by meta-classes.

Queuing and Executing Tests for TDD

CST builds upon a well-defined set of different kinds of modification to the system.
The event mechanism described above, with the possible modification events it in-
cludes, allows for the continuous selection and execution of tests according to the
current state of development.

Our approach distinguishes code entity modifications by their referal to test case
code or non-test code. By convention, those methods of a class extending TestCase
that are prefixed with test are treated as test case methods. Source code entities of
test classes that are non-test methods, that is, attributes, setUp, tearDown, and other
utility methods, are treated equally to application code.

When the creation of a test case method or modifications to one are reported,
the developer is assumed to be in the red phase of the TDD cycle. The test runner
will immediately execute the corresponding test case and provide instant feedback
on the result. If the test fails, it will be queued. Failed test cases will be re-executed
whenever a modification not related to a test method is reported. Now the developer
is expected to be in the green or refactor phase, so the change has the potential to
fix a test. All tests that still fail stay in the queue. A change of an entity can fix
one or more tests cases, but the change can also introduce a fault that breaks other
test cases. All test cases that might be affected by the reported change need to be
re-executed. A technique to select the corresponding test cases is presented in the
next subsection. The tests in the queue, failed before, are run first, providing earlier
feedback on whether the current modification makes the failed test(s) pass.

To provide feedback on the test runs, we extended the tools for browsing and
editing code. Whenever a modification is reported and the test runner executes tests,
a newly introduced GUI widget will inform the developer about the test runner’s
activities and the current status of the test result (Fig. 3). The widget turns red as
soon as one test has failed. Tests are executed in a background process allowing the
developer to navigate to the next code entity of interest and start editing it.
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B

A

C

Fig. 3 An extended code browser in Squeak; having an additional panel on the right (A) that shows
test cases covering the selected method named classRemoved:. Uncovered classes and methods are
highlighted (B). A new widget (C) informs the developer on the current status of the test runner;
whether it is currently running tests, and about the number of tests that have failed.

Re-executing Selected Tests for OO software

The set of tests to be re-executed for an applied change should be minimized. CST
relies on collecting test coverage information, and using this information to select
tests that might be affected by a modification.

Using this coverage information of previous test runs, the CST tools can deter-
mine the set of tests that is to be re-executed for any reported change. Selecting
af-fected test cases is a two-step procedure:

1. If a non-test method is modified, the test runner collects and re-executes all test
cases that covered this method previously. Therefore, the test runner can simply
navigate the coverage relationship between the corresponding method objects.

2. CST also deals with modifications such as adding a method or changing the su-
perclass that might affect late-bound method invocations. When, for example, an
application method m0 is added to a class c0, and m0 overrides a method m in a
superclass c, CST will execute tests that have covered m0. More precisely, it will
select those tests that previously exercised m for instances of c.

As mentioned above, the set of meaningful events, which reports modified code
entities, may vary between languages providing different sets of features. The algo-
rithms to be applied to determine a safe set of tests may vary as well. If the language
supports multiple inheritance, for example, the algorithms have to consider the pos-
sibility of multiple superclasses and the respective linearization order applied to
method dispatch.
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As pointed out in [15], a safe test selection technique for object-oriented software
must also consider exception handling. CST allows to consider exceptions similarly
to other code entities. A basic method constructing an exception object needs to be
instrumented; for instance, default constructors in Java, or basicNew in Smalltalk.
Using the receiver’s dynamic type recorded for each method call, we can determine
whether an exception was created and thrown during the execution of a test case. If
the exception class hierarchy is changed, all test cases that might be affected can be
identified easily.

Establishing a Coverage Relationship

Test coverage information used for test selection is collected during regular test
execution. We decided to collect this information only for packages and classes of
interest. This typically excludes basic development classes such as the collection or
system libraries. The selection of relevant packages and exclusion of others avoids
unnecessary overhead [14]. To record method coverage information, we use method
wrappers [7]. Actual method code is wrapped in tracing code that records the call of
the wrapped method in the context of the currently running test case, and forwards
the sent message to the wrapped method afterwards.

coveredMethods

Object class CompiledMethod

coveringTestMethods

TestCase class

Fig. 4 The coverage relationship between test methods, included in TestCase classes, and applica-
tion methods covered by them.

Test coverage information is integrated into the IDE’s program representation. In
CST, we establish and maintain a coverage relationship between test case methods
and methods covered during test execution, as depicted in Fig. 4. Here, we gener-
ally refer to objects representing methods in the IDE; Squeak Smalltalk provides
so-called CompiledMethod objects to reflect upon and work with methods in the
system.

Employing the test-first principle and using CST, tests run frequently and the
coverage relationship has to be maintained for test runs. To avoid unnecessary start-
up costs, tracing logic is installed incrementally after each compilation step. When
the developer selects packages and classes of interest, wrapper logic is initially in-
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stalled. If source code entities matching the selection criteria are added, they are
wrapped directly after creation. This incremental approach avoids the need to in-
strument source code for each test run.

Using CST, developers can also be provided with instant feedback regarding
test coverage. Classes and methods that are not covered any more are highlighted
in the code browser (Fig. 3). The feedback supports developers in ensuring high
method coverage. We further extended the code browser with an additional fifth
panel (Fig. 3) that shows all test cases covering the currently selected method. This
extension makes the coverage relationship visible and the applied test selection tech-
nique transparent for developers.

3 Providing Examples to Support Learning the Abstract

Visualizations of actual run-time data support program comprehension, like exam-
ples support the explanation of abstract concepts and principles. Unfortunately, the
required run-time analysis is often associated with an inconvenient overhead that
renders current tools impractical for frequent use.

We describe our interactive approach to collect and present run-time data. An ini-
tial shallow analysis provides for immediate access to visualizations of run-time in-
formation. As users explore this information, it is incrementally refined on-demand.
We present an implementation that realizes our proposed approach and enables de-
velopers to instantly explore run-time behavior of selected code entities. Our empiri-
cal evaluation shows show that run-time data for an initial overview can be collected
in less than 300 milliseconds for 95 % of cases.

3.1 Motivation

Developers of object-oriented software systems spend a significant amount of time
on program comprehension [9, 4, 20]. They require an in-depth understanding of
the code base that they work on; ranging from the intended use of an interface to
the collaboration of objects, and the effect of a method activation during this col-
laboration. Gaining an understanding of a program by reading source code alone is
difficult as it is inherently abstract.

The visualization of run-time information supports program comprehension as
it reports on the effects of source code and thus helps understanding it. At run-
time, the abstract gets concrete: variables refer to concrete objects and messages get
bound to concrete methods. For example, profilers and debuggers support run-time
exploration to answer questions such as: “What is the value of a particular method
argument?” or “How does the value of a variable change?”

Unfortunately, the overhead imposed by current tools renders them impractical
for frequent use. We argue that this is mainly due to two issues: a) Setting up an
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analysis tool usually requires a significant configuration effort, as well as a context
switch, b) performing the required in-depth analysis is time-consuming. Both issues
inhibit immediacy and thus discourage developers from using these tools frequently.

We argue that the overhead imposed by current approaches to dynamic analysis
is uncalled-for and that immediate accessibility of run-time information is beneficial
to program developers. Continuous and effortless access to run-time views on source
code supports developers in acquiring and evaluating their understanding. Run-time
views are based on actual data. Thus, they arguably encourage the evaluation of
assumptions and eliminate space for speculation.

We employ a new approach to dynamic analysis enabling a feeling of immediacy
missing from current tools. The central contributions of this work are:

• A novel approach to dynamic analysis based on a shallow analysis and detached
in-depth on-demand refinements,

• A realization of this approach by providing an integrated tool for accessing run-
time information during program development,

• Empirical results to evaluate our claims with respect to feasibility.

We first highlight the benefits of dynamic views for program comprehension and
discuss desired tool characteristics. Afterwards, we present our interactive approach
to dynamic analysis that collects data exactly when needed.3

3.2 Background and Motivation

Due to its abstract nature, source code provides a limited perspective on software
systems. Conversely, dynamic views support program comprehension as they aid
developers in understanding how a system works. In this section, we illustrate this
by means of a running example. We continue by discussing requirements that visu-
alization tools should meet to encourage their frequent adoption in practice.

Exploring a Program’s Run-time

Visualized run-time information helps developers to better understand program be-
havior. In our running example, a developer faces the task of understanding a simple
clock application, which provides an analog and digital view. Figure 5 shows the
structure of the application that is based on the Observer design pattern [12]. The
ClockTimer subject represents a ticking clock, whose instances either of the two
concrete observers can display. Each tick invocation notifies the observers about
the change of state.

The developer in our example is unaware of these internals, but can use visualized
run-time information to learn about them, and to eventually discover the Observer
usage. This process could look as follows.
3 The empirical evaluation of this approach is described in the original paper [22].
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attach(Observer)
detach(Observer)
notify()

<<abstract>>
Subject

update(Subject)

<<abstract>>
Observer

tick()

hour:Integer
minute:Integer
second:Integer

ClockTimer

draw()
update(Subject)

AnalogClock

draw()
update(Subject)

DigitalClock

1

subject
*

observers

Fig. 5 Observer pattern running example.

The visualized information in Figure 6 primarily consists of a call tree that re-
flects a particular run of the application. A call tree provides comprehensive infor-
mation of the entire program execution rather than a single execution path. Some of
the tree nodes have been expanded to reveal details: for instance, it is evident that
tick invokes notify (at index 1).

Fig. 6 Pathfinder is our interactive dynamic analysis tool for the Squeak IDE.

The figure shows (at index 2) that notify sends the update: message to
two different clocks. From this information, the developer can conclude that there
exist two observers, and ascertain this by inspecting the run-time state information
attached to the execution of notify. The object explorer view at index 3 confirms
that the observers list contains two clock objects. Moreover, index 4 highlights
that a ClockTimer participates as the subject in the Observer pattern.
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The provided run-time view helps to answer follow-up questions. For instance
at index 5, the developer speculates that attach: is responsible for registering
observers. In an expanded attach: invocation, at index 6, the combined before
and after views of a method node execution show how a ClockTimer registers
a DigitalClock observer. As another example, index 7 marks two views that
show how the state of the subject changes after a tick execution. If interested, the
developer could now further examine the implementation of that method to continue
exploring.

In a nutshell, the developer is able to identify the conceptual structure of the
Observer pattern as part of the application. In addition to comprehending structural
aspects, the developer also gains deep insight about the interactions of structural
entities at run-time.

Visualized run-time information sensibly augments the information available
from static views on applications, e. g., their source code. For instance, the authors of
the Gang of Four book on design patterns [12] aid comprehension of their examples
in readers by presenting sequence diagrams alongside class diagrams to visualize
collaborations among objects.

Visualizations of run-time data make the mental model readily available and ob-
viate its manual elaboration. There exist valuable approaches to building mental
models of software systems from static representations. IDEs support developers
in navigating a code base, for example by tracing message sends, in order to under-
stand how a system works. However, visualizations such as call trees put application
source code and structure into meaningful behavioral contexts, and object explorers
provide actual examples of objects rather than their abstract names.

The Need for Immediacy

Tools providing such visualizations of run-time data should allow for a feeling of
immediacy to encourage frequent use. To that effect, two characteristics should be
met. Firstly, visualization tools have to be integral parts of the programming en-
vironment. Developers would welcome a tool carrying them from method source
code to the visualization of an actual run of the same method by means of one click.
Secondly, response times have to be low. Visualized run-time information has to be
available within some hundreds of milliseconds rather than minutes [28]. However,
immediacy must not hamper the level of visual detail.

We intend to support program comprehension by reducing the effort of accessing
run-time information. We aim to encourage developers to use our tools frequently.
Developers shall be able to avoid guesswork and validate assumptions by inspecting
actual run-time information instead. The main question that our work addresses is
how to make dynamic analysis results available to developers immediately.
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Immediacy through Interactivity

Our interactive approach to dynamic analysis enables immediacy. Traditional ap-
proaches are time-consuming as they capture comprehensive information about the
entire execution up-front. Low costs can be achieved by structuring program analy-
sis according to user interaction. More specifically, user interaction allows for divid-
ing the analysis into multiple steps: A high-level analysis followed by on-demand
refinements. This distinction reduces the overhead to provide visualizations of run-
time information while preserving instantaneous access to detailed information.

Step-wise Run-time Analysis

Splitting the analysis of a program’s run-time over multiple runs is meaningful be-
cause developers typically follow a systematic approach to understand program be-
havior. For example, in our scenario (Section 3.2), the developer first uses the pre-
sented call tree to gain an initial understanding (1). Later on, the developer identifies
execution paths that lead to the population of the list of observers by inspecting rele-
vant state (2). More generally, program comprehension is often tackled by exploring
an overview of all run-time information, and continuing to inspect details.

This systematic approach to program comprehension guides our approach to dy-
namic analysis: Run-time data is captured when needed. (1) A first shallow analysis
focuses on the information that is required for presenting an overview of a pro-
gram run. For example, method and receiver names are sufficient to render a call
graph as presented in Section 3.2. Further information about method arguments or
instance variables are not recorded. (2) As the user identifies relevant details, they
are recorded on-demand in additional refinement analysis runs. In our example, the
developer clicks on the observers variable to see registered clocks. Information
about instances contained in the list are recorded in a separate run triggered by user
interaction.

This interactive approach to dynamic analysis requires the ability to reproduce
arbitrary points in a program execution. In order to refine run-time information in
additional runs, we assume the existence of entry points that specify deterministic
program executions. For our implementation, we leverage test cases as such entry
points, as they commonly satisfy this requirement [21]. However, our approach is
applicable to all entry points that describe reproducible behavior.

Less Effort through Step-wise Analysis

Splitting run-time analysis and refining the results on-demand reduces the effort for
providing an initial overview, as well as comprehensive details. The amount of re-
quired data for generating a run-time visualization to support an inital overview is
limited compared to the information that is generated in an entire program run. The
data on method activations is sufficient to render the call tree in our example. More
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specifically, the overhead for collecting method name and receiver information is
significantly less than performing a full analysis. A full analysis includes record-
ing exhaustive information before each state change in the execution of a program.
In contrast to performing a complete analysis up-front, minimizing the collected
data imposes a reduced overhead with respect to the execution of the instrumented
program.

User interaction with the initial overview can be leveraged to minimize the over-
head of refinement analysis. As the user expresses interest in individual objects at
explicit points of the execution, required information is loaded on-demand in addi-
tional analysis steps. Such a refinement step involves recording of object state at the
specified point in execution. While recording object state may be time-consuming in
general, we limit the extent of data collection: a refinement step imposes a minimal
overhead by focusing on a single object at a particular execution step. This means
that refinement analysis is hardly more expensive than execution without instrumen-
tation.

Our approach divides the effort for dynamic analysis across multiple runs. The
information required for program comprehension is arguably a subset of what a full
analysis of a program execution can provide. While our approach entails multiple
runs, the additional effort is kept to a minimum, especially when compared to a full
analysis that has no knowledge of which data is relevant to the user. We reduce the
costs by loading information only when the user identifies interest. This provides
for quick access to relevant run-time information without collecting needless data.

Our tool Pathfinder (Figure 6) realizes the described interactive approach to dy-
namic analysis. It is integrated into the the Squeak Smalltalk IDE following our
objective of achieving a feeling of immediacy. Pathfinder demonstrates the feasibil-
ity of our approach.4

4 Summary

In this chapter, we have reported on two improvements that are based on key con-
cepts in design practices. We argued that programming involves design in several
respects. Developers constantly prepare the program to reduce complexity when-
ever possible so that future coding activities remain feasible. This gives reason for
investigating the transfer of design knowledge and its application to the methods
and tools for programming tasks.

First, our idea of continuous selective testing (CSP) and its implementation in
the Squeak/Smalltalk programming environment relieves developers from manually
selecting and executing tests. Based on actual modifications, a selected set of tests
is executed transparently in the background, reporting instantly on the effect of the
applied changes with respect to the overall set of tests to be run. Our test selection
technique is based on dynamic analysis and thus does not require a statically typed

4 A screencast is available online at
http://www.hpi.uni-potsdam.de/swa/projects/pathfinder/
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language for offline processing. It is the first approach to test selection that benefits
from of run-time type information to reduce test sets.

Second, our interactive approach to collect and present run-time data helps de-
velopers to understand program behavior. We argued that user interaction can be
leveraged to distribute dynamic analysis across multiple runs. Our combination of
dynamic analysis and user interaction reduces the effort for providing an initial
overview of a program’s execution. Refinement steps provide relevant details on-
demand and are associated with much lower costs. With Pathfinder we have shown
that our approach can enable immediate access to run-time views for code entities
at the push of a button.
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