2010 Eighth International Conference on Creating, Connecting and Collaborating through Computing

CodeTalk—Conversations About Code

Bastian Steinert*, Marcel Taecumel’, Jens Lincke*, Tobias PapeT, and Robert Hirschfeld*
Software Architecture Group
Hasso Plattner Institute
University of Potsdam
http://www.hpi.uni-potsdam.de/swa
*Email: {firstname.lastname } @hpi.uni-potsdam.de
TEmail: {firstname.lastname } @ student.hpi.uni-potsdam.de

Abstract—Contemporary development environments do not
directly and explicitly support developers in having a conver-
sation about the code they write and maintain. This problem
is aggravated when geographically dispersed teams need to
collaborate on development artifacts. CodeTalk allows developers
to have conversations about source code elements. They can mark
code sections they are concerned about and annotate them. These
annotations provide entry points for an informal discourse about
the strengths and weaknesses of these sections and developers can
work towards a conclusion on how to proceed on the raised issues.
A Squeak/Smalltalk implementation of CodeTalk was evaluated
by several small development teams, indicating improvement in
the informal assessment of code.

I. INTRODUCTION

The purpose of computer programs is the automation of tasks
by telling the computer what to do and how; the development
of these programs mainly involves communication amongst
developers. Writing and extending programs can be considered
as communication. Developers express parts of their under-
standing of a program’s domain in a programming language
of their choice, other developers read it. Reading source code
and comprehending its intent is an activity developers spend
much time on; it is the prerequisite for modifying a program—
extending it with new functionality or refactoring it to a simpler
design.

Programs can be written in different styles making them
more or less easy to understand [1]. This leads to another kind
of communication amongst developers having the source code
itself as the topic. Programming guidelines such as [2] help
teams to establish a common coding standard easing program
comprehension. Pair programming, as suggested in [3], further
encourages developers to continuously talk about the source
code. It helps to ensure a good understanding of the program
and helps developers learning to write programs that are easier
to understand and maintain. Another form of communication
about source code are comments, which have always been part
of computer programs. Comments can be used to describe
the intent of source code in a language different than the
programming language. However, much care and discipline
is required to keep comments and the source code in sync.

We gratefully acknowledge the financial support of the Hasso Plattner Design
Thinking Research Program for our project “Agile Software Development in
Virtual Collaboration Environments”.

978-0-7695-4029-0/10 $26.00 © 2010 IEEE
DOI 10.1109/C5.2010.11

For this and other reasons, it is generally desirable to write
programs so that they can be understood without comments.
To achieve this goal, developers have to communicate about
the source code. All the sins and all the pieces that smell bad
have to be brought to light, allowing developers to learn from
them and to improve the program.

Communication about source code in software development
teams is of significant importance, but still it is not well
supported by current development environments. Tools encour-
aging this kind of communication are even more required
for distributed teams, as geographical dispersion impedes
collaboration. Traditional approaches to communicating about
code such as comments or emails are inadequate; comments
as well as emails are not explicitly connected to source code
entities of interest, requiring significant effort to describe this
connection. This unconnectedness makes comments and emails
also likely to be ignored or forgotten.

In this paper, we suggest CodeTalk as an approach to enable
developers to talk about source code in an informal manner.
CodeTalk has been implemented in Squeak Smalltalk [4] and
was inspired by reviewing tools for digital documents such as
PDF. In a similar way, CodeTalk allows for marking selected
source code of interest and adding annotations. In addition, the
markup is exchanged along with the source code using source
code management systems. With that, communicating about
issues, such as non-meaningful variable names or a need to
refactor, becomes easy and practical, requiring less effort and
providing a better separation of concerns.

The remainder of this paper is organized as follows: Sec-
tion II describes the target scenarios of our work and points
out the need for effective means to informally communicate
about source code related issues. In Section III, we present
our approach to support development teams in this respect
and describe the underlying concepts. Selected aspects of
our implementation in Squeak Smalltalk are discussed in
Section IV. We describe the conducted case study and our
results in Section V. Section VI discusses related work and
Section VII concludes.

II. BACKGROUND AND MOTIVATION

In this section, we motivate the need for tool support that
enables efficient informal communication about source code

IEEE
computer
® psouety

related issues. We emphasize the importance of these concerns
in teams working geographically dispersed, and describe the
limitations of traditional ways to communicate about source
code.

A. Communicating About Code

Developers often talk about the source code of the system to
be developed and extended. The source code itself is the most
important artifact during the development process, particularly
in agile development processes. Developers usually care deeply
about it and prefer, for example, simple and elegant solutions
over complex ones that are more difficult to understand and
maintain [3]. The system naturally evolves and is extended; so
developers often have the need to talk about the source code
with others.

Software developers spend much time reading code. Using,
extending, or modifying parts of a system’s source code
requires an in-depth understanding, ranging from the intended
use of interfaces to the interplay of multiple, independent
system parts. However, parts of the system may be difficult
to comprehend raising the need to request support from the
originators; an algorithm might be very complex or the intended
run-time behavior might be difficult to infer [5].

During code reading developers also often discover source
code that needs to be revisited and improved; for example,
variable or method names can be too general and thus not very
meaningful [1]. Developers might further have ideas to simplify
the system’s design [3], [6] or even detect potential failures
in algorithms. While these issues are often discovered during
regular coding activities, developers may not have enough time
or background knowledge [7] to refactor the respective parts
of the system or to validate their theory of a failure and fix
it if necessary. And sometimes, developers would rather like
to continue working on their primary task at hand [8]. So, an
efficient mechanism is needed to make the discovered issues
explicit and share their insight with peers.

The need for communication about code also arises during
the creation and modification of code entities. Developers
might explicitly want to ask other developers for help or
remarks, for example, whether the defined interface matches
the expectation or whether there is a better, simpler solution. So,
communicating about source code in general is an important
aspect of software development, that should be supported well.

B. Collaboration in Geographically Dispersed Teams

The need for communication support concerning source
code related issues increases when software development teams
are geographically dispersed. Working together in one office
encourages informal talks about the program domain, the
source code, and other topics that are of interest. Developers
can program in pairs, as suggested by Extreme Programming,
and can discuss about the source code at hand whenever
necessary. Developers further have a good awareness of other
developers’ activities; regular meetings, coffee breaks and
lunch, and other joint activities support the exchange of
knowledge. In co-located settings, additional communication

takes place not involving active speaking or listening; devel-
opers passively hear the discussions of others. So, developers
usually know what their colleagues are working on right now,
the tasks they worked on, the problems they tackled; and
developers are aware of their colleagues’ habits concerning
work in general and programming style in particular. This
knowledge and opportunity for informal discussion supports
the communication about source code related issues such as
non-meaningful variable names or the need to refactor. There
is, however, the trend that project teams tend to disperse
around the world. Distributed development is getting more
common, requiring team members to resort to means other
than face-to-face communication to organize themselves, to
collaborate, and to keep in touch regardless of geographical
location. Developers have fewer opportunities for informal
talks and are less aware of each others’ activities and habits.
The barriers to communication are much higher, involving
the potential of omitting discussions about the rather small
source code related issues. Tools that developers currently use
to exchange ideas and knowledge are not satisfactory regarding
the desired informal ad-hoc kind of communication.

C. Traditional Ways of Communicating about Source Code

Current approaches to communicating about source code
include source code comments and external communication
tools and protocols such as email and instant messaging. How-
ever, both have limitations and do not encourage conversations
about code.

Comments allow developers to document the source code.
They can also be used for reviewing and adding remarks or
questions but have the following restrictions and limitations.

The belonging to code entities referenced in the com-
ment is often ambiguous. Making the belonging clearer,
developers often insert additional blank lines, indicating
whether the lines below or above are referenced in the
comment.

Additional description is required when authors want to
reference a particular element in the code, such as a
particular variable name

Comments further get out of sync with the referenced code
easily, also due to the informal character of the connection
between comments and referenced source code.
Developers hesitate to modify source code invasively for
adding an informal comment spontaneously; they might
respect the ownership, a carefully designed code layout, or
they might just have a different mind-set while reading the
source code similar to reading physical paper documents.
Only adding a comment is not sufficient to request the
attention of other developers. In a sense, it is just one
more comment.

The issue mentioned last, the need to point other developers
to concerns and entities of interest, is usually handled by
sending an email. Developers might also copy the source code
of interest, paste it into an email, and describe the remarks
or questions. Writing emails, however, has the following

@ add comment | |

 add code chat | | @ mark bad | - | ?‘ convert inline comment |

o B

actOnClickFor: aTextMorph

3 [0BCodeBrowser defaultBrowserClass
} openOnClass: self theCl =

11-06-2009, 18:07 - mt X
Look for keyword... b
TUUAY, WO T e, (]

Why do we have to force a

World displayworldSafellt

on: Error

do: [:e
* true

-l

Transcript show:

Figure 1.

additional disadvantages, mainly due to email clients not being
integrated into the development environment:

« It involves a context switch and requires a considerable
amount of time, contradicting the idea of informal commu-
nication and ad-hoc annotations. In the focus of a primary
task at hand, writing an email might be considered as too
much effort to notify others about inadequate names.

It requires detailed descriptions of the code entities
referenced in the explanation, as emails are not connected
to the source code.

Issues described in emails are easy to forget, when they
are not handled immediately.

Neither comments, nor emails, nor their combination provide
adequate means to support informal spontaneous communica-
tion about source code. But this kind of communication is
important; it helps to ensure a high code quality and helps
developers to become better in their profession. This has been
our motivation to design and develop a new approach to support
this informal ad-hoc communication that we describe in the
next section.

III. CODETALK—INFORMAL COMMUNICATION VIA
MARKUPS

This section describes CodeTalk, our approach to enable
efficient informal communication about source code. CodeTalk,
which was implemented in Squeak Smalltalk [4], allows
developers to mark and annotate single expressions, whole
lines, or entire methods in the source code. It works similarly
to text processing applications and tools that are capable of
adding comments to PDF files. The markup and annotations
are shared along with the source code using regular source
code management support.

A. Annotating Source Code

Developers regularly come across pieces of source code that
are of unsatisfying quality and bring up the need for discussion.
Not all kind of issues can, however, be addressed immediately,
as we pointed out above II. By means of CodeTalk, developers
can mark the the source code of interest and describe their
concerns. This annotation mechanism enables developers to

'[CodeTalk] Method browsina not possible

C

redraw here?

Today, 0B:48 - cs:
Because the system browser
may have drawing issues,.,

Code with markup (A), markup halo buttons (B) and the chat (C).

capture even small issues and bring them to light. Team member
will become and stay aware of all issues.

One team member might, for example, discover an invoca-
tion of an expensive operation. Figure 1 shows an example
method in a typical code browser in Squeak. The annotated
statement forces a full redraw of the entire scene graph, which
can be a time-consuming operation. Developers might be
skeptical about the necessity and mark the selected code as
critical using a context menu or a keyboard shortcut. This
will highlight the statement with a red background color. To
additionally describe their opinion and thoughts, developers
add a note in the dialog that will be displayed next to the
marked section, as shown in Figure 1.

This new annotation functionality was integrated into the
standard development environment, in particular into the
tools for browsing and editing the code. So, developers can
informally annotate a piece of code whenever necessary during
their regular coding activities. The region of interest in the
source code can be marked directly and annotated with an
explanation.

Figure 2. CodeTalk’s markups are shared through the SCM.

B. Exchanging Annotations

Annotations are an integral part of the source code and
as such they are exchanged along with the source code
itself. When developers commit modifications applied to their
working copy, they will also submit all annotations currently

p—
) —
,
/
— - .
,
’ —
,
, —
’
B | —
4 -
. .
. ’—’ —
.-
g J

Figure 3. A new conversation about code evolves.

in the code base to the source code repository, as depicted in
Figure 2. The critical question about the statement that force a
complete redraw is now part of the newly created source code
revision.

When team members update their working copy later, they
will retrieve the newly added annotation along with source
code modifications. After the regular code update procedure a
new dialog window will appear providing information about
new or changed annotations, shown in Figure 4.

Other developers will then notice the question regarding the
redraw statement, and the authors of that code might either
remember a reason for forcing the redraw or they might not.
In the later case, they might consider removing the statement,
test the application to validate the assumption, and commit the
modification. As the annotations are connected to the source
code they reference, the annotations would be removed together
with the referenced statement in the described scenario.

On the other hand, if forcing the redraw is required,
developers can change the type of annotation, from critical
to normal, and answer the previous question. Our extensions
to the code browser enable developers to reply directly to
questions or remarks in annotations so that a chat can evolve
(Figure 3).

CodeTalk was designed so that every annotation refers to
a specific revision of the source code. All annotations are
thus persistent. This additionally allows for browsing older
annotations of a method that were already removed.

C. Browsing Markups

The markup browser of CodeTalk as seen in Figure 4 appears
after each code update to provide an overview of all annotations.
It draws the developers attention to new issues and allows
developers to deal systematically with the marked issues, so
that they are not forgotten or overseen in the editor.

This alternative view provides easy access to all markups
appearing in the source code and addresses the awareness
problem by filtering (A), grouping (B) and sorting all markups
of a specific scope like a package or a class. The browser
presents general information like creation time, creator, a
hyperlink to the method and the respective code snippet (C)
and lists all chat messages in a reversed chronological order (D)
below.

D. Hyperlinking in Annotations

Talking about source code often involves other sources
located outside the currently discussed context: Sometimes

806

--all (11)--
--for me (1) --
cs (1)

mt (10} Xpf alk> >
03-06-2009

G-by-l.asr.aahh&l\hyq\- by chat .size

mt
E 05-06-2009, 16:26
Ta #talk
XpfCtMarkupBrowser class>>openOn:

Markups for mc package "Xpf-CodeTalk
05-06-2009
XpfCtMarkupBrowser class=>openOn: (#comment)

@0

XpfCtMarkupBrowser class=>open0On: (#talk)

by creation time by tag

C

"aCodeNode markupFilters first"

D

©| 85-86-2009, 16:26 - mt
"Startup-Selecticn slows down the whole startup by a factor of two."

Figure 4.
annotations.

The markup browser increases the awareness level of new

developers come across methods that seem to be very similar,
but they do not have the time or knowledge to perform the
necessary refactoring. CodeTalk allows developers to mark that
issue and to reference the other method in their comment.
For example, the chat in Figure 5 replaces the occurrence
of "String»#findTokens:" automatically with a hyperlink that
browses to the method "findTokens" in the class "String". The
link below points to a method "split" that does not exist and
is therefore drawn in red.

Today, 19:24 - mt
Look for keyword...

Today, 19:25 - mt:
This implementation is like

= OrderedCollection n
) String==>#findTokens:.

parators := delimiters isChi
ifTrue: [Array with: delim
ifFalse: [delimiters].

) 1= 1

Today, 19:26 - sr:

Why don't we do it like
String==>#split?

Today, 19:27 - mt:

I don't have that method.

&

Figure 5. Hyperlinks from comments to methods enable convenient source
code navigation.

E. Discussion

CodeTalk provides informal semantic classification of its
markup using background colors. Normal syntax highlighting
does not aim for classifying the highlighted source code
in any way. However, the ability of CodeTalk to mark a
code snippet red, yellow, or green provides classification.
Generally, the resulting background color is independent from
the programming elements. Developers can consider this in
many different ways. Thus, it is possible to assign different
meanings to colors, e. g., to point out critical sections or bad
style.

The ease of use encourages the developer to prefer a markup
to a classic inline comment. Besides using the context menu,
there are keyboard shortcuts and a toolbar above the editing
panel present to address different types of users. Additionally,
the colors that are available for markup form an explicit form of
highlighting that is easily recognized. Thus, the variety of tools

combined with the eye-catching markup provide advantages
over using comments and are more likely to be used.

The primary concept of CodeTalk is to separate the discus-
sions about the source code from the source code itself, while
keeping them connected. This separation allows for individual
support for the different concerns; specially designed tools can
ease the creation and exchange of annotations and can provide a
better awareness of these issues. The direct connection between
source code and annotations indicates that they belong together
and, thus, encourages developers to keep both in sync. This may
prevent the problem that occurs when the code gets updated
while accidentally ignoring the corresponding comment.

IV. IMPLEMENTATION OF CODETALK

This section describes selected aspects of CodeTalk’s imple-
mentation in Squeak Smalltalk. Our implementation heavily
benefits from how text is represented in Squeak. CodeTalk is
also integrated with a source code management system that
enables, for example, the distribution of annotations along with
the source code.

A. Source Code as Rich Text

The implementation of CodeTalk is based on the ability
of the Squeak environment to handle source code as rich
text. The Squeak environment also provides text processing
capabilities to work with text objects and formatting these texts.
Due to these capabilities, Squeak has been prepared to handle
source code as rich text as well. This feature originally enabled
developers to individually style source code, for example,
to color segments of special importance or to change their
font size. While this feature has been ignored by recent
developments such as the automatic syntax highlighter' or
the source code management system Monticello, our CodeTalk
implementation makes use of these capabilities.

Text

String Attribute
—— / N\
Action Emphasis Color Annotation
| Syntax Highlighting / \ \\
Tag Author Time Chat

CodeTalk

Hyperlink

Figure 6. Relationship between text and annotations
Regarding Squeak, every text object has attached markup
information describing the desired style and format of the
text. The markup technique is based on a concept called
RunArrays that is similar to standoff markup but does not
feature overlaps. Every style (like bold or italic) is represented
by attribute objects and every region of a text with a different
set of attributes is a single run. These attributes are then used
during the actual rendering of the text. We introduced markup
attributes that are drawn as colored rectangles during the text
rendering. The position of the marked text, which is calculated

IProject website: http://www.squeaksource.com/shout/ (2009-10-22)

in the rendering process, is then used to update the markup
halo buttons. These halo buttons are the user-interface elements
for adapting the region, deleting the markup, and adding or
showing an annotation to that markup.

B. Comments and Talks as Annotations

CodeTalk’s annotation text attribute is associated with tags
and textual comments. The textual comments can be talks,
which are chats of different authors. The annotation preserves
time stamps and authors, to allow filtered views in the markup
browser.

The automatically created hyperlinks in text are created
by parsing the text with regular expressions and replacing
everything of the format "aClass»#methodName" with a proper
hyperlink.

Comments and talks are displayed in their own windows, to
separate them from the display of the source code.

C. Source Code Management Integration

We extended Monticello,? which is the standard source code
management system (SCM) in Squeak, to support markups (see
Figure 2). CodeTalk associates annotations with text objects
that are then handled by the source code management system.
Traditionally, this SCM only operates on strings of source code.
However, it was possible to make Monticello aware of text
object-based source code and make it store annotations in
packages.

V. CASE STUDY

CodeTalk has been used by several developers during a case
study that was performed with 80 students in our Software
Engineering I lecture. Students formed 16 different teams of
five that were asked to develop applications in Squeak. The
teams used an agile software development process such as
Extreme Programming [9]. The project’s time frame was about
three months.

After the project, the source code of all revisions of all
groups was analyzed for markups. As the agile process that had
to be employed by the teams incorporated primarily co-located
work, there was no necessity for asynchronous communication;
most of the students met every day due to lectures to be
attended. However, not all students were able to work like this.
Long travel times, work responsibilities, or child care hindered
co-located work. Thus, we found that four teams made strong
use of CodeTalk annotations that have been stored using the
Monticello SCM. In order to gather personal experiences with
CodeTalk two of the four teams that were using CodeTalk were
interviewed.

A. Interview

During the interview several questions were presented to the
teams. In the following, the essence of the teams answers is
presented

2Project website: http://www.wiresong.ca/Monticello (2009-
10-19)

Team 1 Team 2 Team 3 Team 4

Number of Methods 745 605 700 828

Number of Revisions 178 174 246 335

5 o All Over Time 103 25 82 43
E Y Y Y S

z= At Project End 0 1 2 3

Average Lifetime 33 18 27 63

Figure 7. Summary of markup usage from selected teams

a) Application of CodeTalk: The teams reported that
markups were used to write down tasks. This included planned
refactorings of bad source code and new features that needed
to be implemented. Additionally, the critical markup was
occasionally used to point out bad coding style. Students also
used comment markups for personal notes, especially as ToDo-
items.

b) Reasons of usage instead of, e. g., email: Those teams
that made heavy use of CodeTalk actually had a strong need
for asynchronous communication, as many team members
contributed from many different location and at different
times for several reasons. The students argued that they used
CodeTalk mainly due to convenience; it allows for staying in
the current environment and context instead of switching tools.

¢) Reaction to Markups: While CodeTalk offers the
possibility to address an annotation to a particular developer,
this feature was not used in most cases and team members
usually wanted to address the whole team. Also, developers
were always aware of annotations, understanding them as
part of the code base. The presence of markup had such a
strong effect that developers were actually concerned about an
increasing number of markups that they might not be able to
handle.

d) General impression of Codelalk: The markup browser
was judged to be clearly arranged and helpful.

e) Problems: It was stated that it would have been helpful
to add annotations to describe a new feature. Currently, this
feature is not present, for annotations are associated with source
code. Often, not yet implemented features do not have any
corresponding source code, thus, no annotations are possible.

B. Data Analysis

We additionally evaluated the actual use of CodeTalk during
the projects by analyzing all source code revisions. As shown
in Figure 7, the analyzed projects are of similar size consisting
of about 600 to 800 methods. While one team created 20
annotations, other teams created up to 100 annotations.

Figures 8 and 9 indicate a continuous use of CodeTalk
during the course of the project. At the end of the projects,
development teams cleaned up all markups, hopefully handling
the described issues first. Note that the source was inspected
by teachers at the end of the project. The average lifetime of
annotations was 20 to 60 revisions, approximately a fifth of
all revisions created during the project time.

Number of
Markups

50 Team 1
Team 2
40 e==Team 3

Team 4
30

20

Pm— L.\
—1
Project
Begin

Project
End

Figure 8. Absolute number of markups in the source code over whole project
development time

Number of

New Markups =Team 1

40
Team 2
®Team 3

30
Team 4

20

Number of new markups in several development parts

First

Revisions

Last
Revisions

Figure 9.

Annotations created during the projects include the following
examples:

o “That is somehow totally crap. The instance variable
separatorMap seemed to be good for defining the place
of these separating things for each category ...” (from
German: “Das ist irgendwie total Mist. Die Instanzvariable
separatorMap dacht ich wiér gut, um fiir jede Rubrik
festzulegen, wie die Trenndinger stehen miissen ...”)
“Looks paradoxical! ...” (from German: “Irgendwie para-
dox! ...”)

“Where should the layout code be included, this seems
not to be a good place?” (from German: “Wo soll das
Layout stehen? Hier ist vielleicht nicht der beste Platz.”)
“onClick + callback => nonsense”

“Yes, there is a better way to do this :-)”

C. Discussion

Developers started to use CodeTalk occasionally in the
beginning of the projects and used it more often later on
(Figure 9). It seems that the need for conversations increases
with the size of the code base. We further think that developers
regard annotations as part of the source code and understand
critical annotations as an indicator for insufficient code quality.
All remaining annotations were related to the end of a project,
to make it ready for release.

The example annotations listed above show that developers
like to use a colloquial style for communicating about source
code related issues. While we have no evidence whether the
teams would have discussed a similar amount of issues without
CodeTalk or not, we think CodeTalk actually encourages this

kind of conversation, which is important to bring all flaws to
light.

VI. RELATED WORK

The markup notion of CodeTalk has similarities to the review
markup concepts of common document processors. Regarding
the programming domain, CodeTalk is not the first attempt to
deal with developer communication by means of source code.
The notion of Literate Programming shares some rationale with
CodeTalk. Also, two tools are known to have similar aims as
CodeTalk.

A. Review Markup

Document processing applications often support adding
review markup to their documents [10]. As an example, con-
sider PDF annotation supported by Adobe Acrobat or the free
PDFedit’ and Xournal*. These application provide graphical
and textual annotations that are stored inside a PDF file in
order to serve as review markup. Similarly, text processing
applications feature review markup; e.g., OpenOffice.org’
provides a review toolbar that facilitates markup insertion
and tracking of changes to content. Both kinds of application
focus on direct communication between the reviewers, which
is similar to CodeTalk’s intent. However, these tools are not
applicable in software development, as the scope of their
document formats does not include source code.

Regarding tool support for writing in dispersed teams, an
overview of such tools that support annotations is available
in [11].

B. Literate Programming

Introduced by Knuth, Literate Programming [12] (LP)
facilitates logically structured documentation by extracting
program code and documentation into separate entities from
a common source. That source, in turn, is logically structured
as nodes. Nodes and, thus, pieces of code (e.g., functions)
that are used in different places of the source code are
referred to by cross references in the documentation, thus
providing high code navigability. Kasper @sterbye has intro-
duced an LP environment for Smalltalk [13] that features a
hypertext-approach for the aforementioned cross-referencing
facility. Both @sterbye’s and Knuth’s approach are verbose and
encourage incorporating rationale about written code. They
also include source code-invasive techniques such as splitting
methods across documentation nodes when they are actually
one method in the target source code. Furthermore, @sterbye’s
approach features hyperlinking of all words to possible targets
nodes in the environment, especially classes and methods. This
is similar to the hyperlink mechanism of CodeTalk.

LP focuses on documentation and less on addressing other
developers or asking questions. High code readability is also
an aim of LP.

3Project website: pdfedit .petricek.net (2009-10-22)
“Project website: xournal.sourceforge.net (2009-10-22)
SProject website: www . openoffice.org (2009-10-22)

C. Source Code Markup Tools

Two tools are known to be intended to handle markup in
source code.

a) TagSEA: Extending the Javadoc® tool, TAGSEA [14],
[15] tries to combine waypoints and social tagging in com-
ments. Tags written according to the Javadoc conventions are
processed and presented in separate windows to allow easy
navigation from tag to tag. Whole routes can be created through
the code. A case study [15] proves that the use of tags and
informal messages can produce an information catalog which
helps to understand and develop a system. These stand-in
comments are accessible with every notepad application and,
due to Javadoc, not limited to Java as programming language.
However, an intensive use of Javadoc comments could make it
hard to read the source code itself. CodeTalk is able to exploit
the possibilities of Rich Text, thus, does not need to affect
comments. Although the structure of markups in CodeTalk is
quite flat compared to TAGSEA, limited possibilities regarding
custom tags result in a collection of markups that is much
easier to handle by all developers.

b) ICICLE: Intended as a code inspection tool to be used
in code review processes, ICICLE [16] has been developed
to add annotations to source code. During review meetings,
this tool facilitates the recording of remarks regarding the
source code. Resulting stand-off markups needed a tool to
visualize them together with the source code. ICICLE supports
the association of an annotation to a line of source code. Small
icons at the beginning of each line indicated their presence.
The purpose was to optimize the system, discover bugs and
discuss other concerns in the context of a review session.
Using CodeTalk, direct communication and asking questions
is possible during the entire process of code writing.

VII. SUMMARY AND OUTLOOK

In this paper, we suggest CodeTalk as an approach to
support informal communication about source code. Adequate
means to support this conversation are required to encourage
the discussion about issues such as non-meaningful variable
names, the need to refactor, performance considerations, or
suspicion of a bug. The demand for effective communication
support is increased in geographically dispersed development
teams. CodeTalk, which was implemented in Squeak Smalltalk,
addressed these needs by enabling developers to mark and
annotate a selected piece source code, and by automatically
exchanging these annotations along with the source code.
Our approach to annotating selected source code is based
on handling it as rich text in the development environment.
CodeTalk was successfully used in student projects. During
these projects, students added several annotations to their code
base, bringing inadequate pieces of code to light. Our plans
for future work include the integration with other development
tools such as issue tracking systems or test and integration
tools, which continuously report about the health of the entire

OProject website: http://java.sun.com/j2se/javadoc (2009-06-
27)

system. We also plan extending support for discussions about
further software entities and system structure. This will enable
developers, for example, to easily describe the need to refactor
a class hierarchy.

VIII. ACKNOWLEDGEMENTS

We thank Ian Piumuarta for his valuable feedback and
fruitful discussions.

[1]
[2]
[31
[4]

[5]

[6]
[71

REFERENCES

P. Oman and C. Cook, “Typographic style is more than cosmetic,”
Commun. ACM, vol. 33, no. 5, pp. 506-520, 1990.

E. Klimas, S. Skublics, and D. Thomas, Smalltalk with style.
Hall, Inc. Upper Saddle River, NJ, USA, 1995.

K. Beck and C. Andres, Extreme Programming Explained: Embrace
Change, 2nd ed. Addison-Wesley Longman, 2004.

D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay, “Back to
the Future: The Story of Squeak, a Practical Smalltalk Written in Itself,”
in OOPSLA ’97: Proceedings of the 12th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications.
New York, NY, USA: ACM, 1997, pp. 318-326.

A. Von Mayrhauser and A. Vans, “Program comprehension during
software maintenance and evolution,” Computer, vol. 28, no. 8, pp.
44-55, 1995.

M. Fowler and K. Beck, Refactoring: improving the design of existing
code. Addison-Wesley Professional, 1999.

T. Shaft and I. Vessey, “The relevance of application domain knowledge:
Characterizing the computer program comprehension process,” Journal
of Management Information Systems, vol. 15, no. 1, p. 78, 1998.

Prentice-

[8] E. Horvitz, C. Kadie, T. Paek, and D. Hovel, “Models of attention

[9
[10

[11

[12
[13

[14

[15

1
1
1

1
1
]

1

>

in computing and communication: from principles to applications,’
Commun. ACM, vol. 46, no. 3, pp. 52-59, 2003.

K. Beck, Extreme Programming Explained: Embrace Change. ISBN
0201616416. Addison-Wesley, 1999.

J. Wolfe, “Annotation technologies: A software and research review,
Computers and Composition, vol. 19, no. 4, pp. 471 — 497, 2002.

R. M. Baecker, D. Nastos, I. R. Posner, and K. L. Mawby, “The user-
centered iterative design of collaborative writing software,” in CHI ’93:
Proceedings of the INTERACT ’93 and CHI ’93 conference on Human
factors in computing systems. New York, NY, USA: ACM, 1993, pp.
399-405.

D. Knuth, “Literate Programming,” The Computer Journal, vol. 27, no. 2,
p. 97, 1984.

K. @sterbye, “Literate smalltalk programming using hypertext,” IEEE
Transactions on Software Engineering, vol. 21, no. 2, pp. 138-145, 1995.
M.-A. Storey, L.-T. Cheng, 1. Bull, and P. Rigby, “Shared waypoints
and social tagging to support collaboration in software development,” in
CSCW °06: Proceedings of the 2006 20th anniversary conference on
Computer supported cooperative work. New York, NY, USA: ACM,
2006, pp. 195-198.

M. Storey, L. Cheng, J. Singer, M. Muller, D. Myers, and J. Ryall, “How
Programmers can Turn Comments into Waypoints for Code Navigation,”
in [EEE International Conference on Software Maintenance, 2007. ICSM
2007, 2007, pp. 265-274.

L. Brothers, V. Sembugamoorthy, and M. Muller, “ICICLE: groupware for
code inspection,” in CSCW ’90: Proceedings of the 1990 ACM conference
on Computer-supported cooperative work. New York, NY, USA: ACM,
1990, pp. 169-181.

>

