Interleaving of Modification and Use
in Data-driven Tool Development

Marcel Tacumel! Michael Perscheid?

Bastian Steinert!

Jens Lincke! Robert Hirschfeld!

1Hasso Plattner Institute, University of Potsdam, Germany
2S AP Innovation Center Potsdam, Germany

Lffirst.last }@hpi.uni-potsdam.de 2michael.perscheid@sap.com

Abstract

Programmers working in a Unix-like environment can easily
build custom tools by configuring and combining small fil-
ter programs in shell scripts. When leaving such a text-based
world and entering one that is graphics-based, however, tool
building is more difficult because graphical tools are typi-
cally not prepared to be easily re-programmed by their users.
We propose a data-driven perspective on graphical tools that
uses concise scripts as glue between data and views but also
as means to express missing data transformations and view
items. Given this, we built a framework in Squeak/Smalltalk
that promotes low-effort tool construction; it works well for
basic programming tools, such as code editors and debug-
gers, but also for other domains, such as developer chats and
issue browsers. We think that this perspective on graphical
tools can inspire the creation of new trade-offs in modularity
for both data-providing projects and interactive views.

Categories and Subject Descriptors D.2.6 [Software Engi-
neering]: Programming Environments—graphical environ-
ments

Keywords Vivide, graphical tools, tool building, scripting,
adaptation, reflection

1.

Integrated programming environments such as Eclipse and
Visual Studio represent modular and extensible software
systems par excellence. Programmers working in such en-
vironments can choose from a prolific variety of plugins,
which support activities such as program understanding,
modification, and deployment. Their main challenge is to

Introduction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

Onward! ’14, October 20-24, 2014, Portland, OR, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3210-1/14/10. .. $15.00.
http://dx.doi.org/10.1145/2661136.2661150

185

master the graphical user interface, that is, learn about fea-
tures, shortcuts, and best practices. Even this learning effort
is manageable because plugin-based tools can be configured
and combined to accommodate many different domains,
tasks, or personal preferences. Given this, programmers can
conveniently take on the role of tool users.

Building tools comes with a subjective trade-off between
utility and usability. Thus, programming tools are likely to
exhibit deficiencies during actual usage. When tool builders
assume an idealized set of prospective tasks and users, there
is a chance that they make inadequate assumptions or miss
some corner cases. In that case, the tool user who detects
such a deficiency can contact the tool builder; bug notices or
feature requests can typically be submitted. Then, the user
can wait for a resolving response or go on working around
the detected deficiency. Now for programmers being the tool
users, this procedure may be unsatisfactory. If they have
access to the tool’s sources, they may want to address the
problem by themselves to save time.

However, building graphical tools is a challenging en-
deavor. Even simple tools require much code to be writ-
ten because frameworks such as Eclipse/RC and Qt/U
impose verbose patterns. Typically, that code describes the
rules of projecting data to graphical widgets and of inject-
ing changes back to it; but the unfamiliar reader can have a
hard time ([26], [7]], [20]) localizing and understanding those
rules beneath numerous packages, classes, and methods. The
adaptation process will be impeded if programmers are not
versatile enough to be both tool user and tool builder.

Consequently, the sole means of configuring and com-
bining plugins in graphical environments is too limited and
many programmers may hesitate to employ their skills for
adaptation purposes because diving into tool source code is
distracting and time-consuming. Indeed, we made promis-
ing observations in a different kind of programming environ-
ment where graphical interactivity is of minor but program-
matic ease of major interest. Consider the following example
of a Unix shell script:

!'Eclipse Rich Client Platform, http://eclipse.org
2 Qt User Interfaces, http://qt-project.org

http://eclipse.org
http://qt-project.org

curl http://en.wikipedia.org/wiki/Unix \
| grep -o -P ’href="/wiki/.*?"’ | sort | uniq \
| sed -r ’s/href="(.+)"/http:\/\/en.wikipedia.org\1/g’ \
> urls.txt

This is a script that will execute in many shells on Unix-
like systems such as in bash on Linux. It retrieves the HTML
content of the Wikipedia article about Unix (curl), extracts
relative URLSs to other articles (grep), sorts them (sort), re-
moves duplicates (uniq), transforms relative URLs into ab-
solute ones (sed), and writes the output into a file (urls.txt).

In such text-based environments, programmers can ben-
efit from tools that follow the filter pattern [31]. These fil-
ters are not interactive but transform text streams, which
origin from files or processes, according to simple config-
uration and combination rules. Interactive shells and their
scripts represent powerful interfaces that enable program-
mers to employ filters in daily work. They can create and
adapt respective tools with low effort while directly working
with relevant datal]

Based on this observation, we want to address the follow-
ing research question:

How can we support programmers to build graphical
tools with an efficiency comparable to Unix’ filters
while retaining the virtues of graphical components?

We do not just want to embed a command-line interface
into a graphical environment. Many environments already
have that. Rather, we are looking for a mechanism that sup-
ports configuring and combining interactive views ranging
from common list-based widgets to advanced software vi-
sualizations such as [8] and [14]]. In that sense, we want to
support programmers to focus on their relevant software ar-
tifacts while employing rich views. In general, this should
improve the support for iterative, data-driven tool develop-
ment and programmers would be encouraged to directly try
out any idea whether it might turn out beneficial or not. They
would be in control of how to explore and modify the ac-
cessible space of software artifacts to fulfill the current pro-
gramming task efficiently.

In this paper, we present a mechanism that supports low-
effort construction of graphical tools. It resides between the
fields of (1) processing data and (2) presenting data in graph-
ical views on screen. On the one hand, it can provide the nec-
essary glue to decouple both fields and promote their exten-
sibility and reusability. On the other hand, it can reach into
one or the other field to provide missing functionality ad-
hoc according to specific domains, tasks, or personal prefer-
ences. Basically, it is a script-based, data-driven approach to
transform software artifacts and prepare them before show-
ing them on screen. We think of graphical tools as multiple
pipelines where artifacts flow through and where program-
mers can look into to explore and modify them. Still, the

3 The Microsoft PowerShell provides cmdlets, which brings this idea from
the file-based to the object-oriented world.

186

level of interactivity is mainly controlled by existing views
and the kind of available data mainly by the rest of the envi-
ronment. Currently, we are investigating how far our mech-
anism can reach into both fields to provide a better trade-off
between complexity and flexibility.

In this paper, we make the following contributions:

e A data-driven perspective on graphical tools that forms a
simple conceptual model for programmers with the intent
to provide frameworks for low-effort tool construction

¢ An concrete mechanism for scriptable tool construction
in Squeak/SmalltalkE] that considers our data-driven per-
spective

* An example case that illustrates how programmers can
perform comprehension activities while iteratively build-
ing and adapting supportive tools

In the next[section 2| we describe problems of traditional
designs for graphical tools and shift the focus from behavior-
driven to data-driven architectures. In[section 3] we describe
our mechanism for script-based, data-driven tool construc-
tion. We present a bigger example that shows applicability
of our framework in [section 4l A discussion about the tool
building effort follows in Finally, gives
an overview of related work and concludes our
thoughts.

2. From Behavior-driven to Data-driven

We describe our notion of integrated programming envi-
ronments as a basic argument for further ideas and conclu-
sions in this paper. Then, we identify problems in traditional,
behavior-driven tool designs and promote a data-driven per-
spective on graphical tools.

2.1 Live Programming Systems

Programmers benefit from short feedback loops. Such loops
usually consist of code reading, writing, compiling, and run-
ning. One goal of programming environments is to inte-
grate those programming activities in a way that program-
mers barely notice context switches but can focus on their
tasks. As those tools are influenced by the underlying pro-
gramming language and execution environment, this works,
for example, arguably better for Java projects in Eclipse
than it does for C++ projects in Visual Studio. Then, there
are so-called live programming systems, which take this
idea one step further and allow for actually molding run-
ning programs, which effectively provides a sense of im-
mediate feedback. Prominent examples include Self [37],
Squeak/Smalltalk, and LivelyKernel [22]. Considering the
tool building scope of this paper, we continuously think of
such reflective systems where the base effort is arguably
lower compared to extending Eclipse or Visual Studio.

4 The Squeak Programming Environment, http://www.squeak.org

http://www.squeak.org

Squeak/Smalltalk is an object-oriented, class-based, dy-
namically typed programming language and environment.
Typical for Smalltalk implementations, code writing and
code execution go hand in hand. Programmers are able to
evaluate a piece of Smalltalk code in any standard tool that
provides a text input field such as code browsers or debug-
gers do. Having this, the process of creating a program in-
terleaves with the process of debugging and using it. Addi-
tionally, Squeak provides a graphics framework, which takes
advantage of the environment’s molding capabilities: Mor-
phic [24]E] The run-time state of any graphical component,
called morph, can be accessed with a simple mouse click if
it is visible on screen as part of the running program. Basi-
cally, the modified program can then immediately exhibit its
adapted behavior.

However, the flexibility of the Squeak/Smalltalk pro-
gramming system did not yet yield a mechanism to promote
low-effort tool construction per se. We argue that, still, many
tools employ designs that stretch the feedback loop unnec-
essarily. Typically, there is no direct connection between a
tool’s run-time components and its source code [9], modifi-
cations involve domain-independent redundancies, and there
have to be additional means to reliably update tools to keep
on using them [21]].

2.2 Simplifying Behavioral Descriptions

The Unicx filter pattern [31]] emerged from the idea to write
simple, reusable C programs with the intent to solve larger
problems in small steps. Although complexity in a C pro-
gram is not limited as such, programmers are advised to
only read from the standard input stream, consider some
command-line parameters, and eventually write the results
to the standard output stream. They could introduce side ef-
fects by reading other files or talking to other processes, but
this would lower the chance of their program to be reused by
other programmers.

The Unix shell, then, provides an appropriate interface to
take advantage of all those small filter programs. Although
shells provide complete scripting languages too, their simple
pipe syntax is sufficient to connect input and output streams;
the resulting scripts are programming tools—and filters—of
their own right. Encapsulating the introductory example into
a script that is configurable to query any Wikipedia page and
extract their absolute urls can look like this:

#!/bin/bash
curl http://en.wikipedia.org/wiki/$1 \

| grep -o -P ’href="/wiki/.*?"’> | sort | uniq \
| sed -r ’s/href="(.+)"/http:\/\/en.wikipedia.org\1/g’

Now, programmers can use this script wiki.sh in another
script or directly at the command line like this:

./wiki.sh Unix > urls.txt

5 Note that the idea of Morphic has a previous implementation in Self [37]
and a more recent one in the JavaScript Web programming system called
LivelyKernel [22].

187

We appreciate the simplicity of describing such tool be-
havior. In short, we want to support the following character-
istics in graphical tools:

Simple means of configuration Many filters accept param-
eters from the command line such as switches or regular
expressions to configure their internal behavior.

Simple means of combination The shell provides a simple
syntax to connect a stream of data between filters (i.e.
“1”) and to redirect streams from and to files (e.g. “>”).

Simple means of abstraction Writing and reusing shell
scripts is straightforward. Only a small subset of the
scripting language is used to, for example, access pa-
rameters (e.g. “$1”), read from the standard input (i.e.
“read”), or write to the standard output (i.e. “echo”).

Data-driven usage When using filters, programmers can
focus on their actual software artifacts, which mainly
represent files and their text-based contents.

In general, we think that such a mechanism is simple
yet powerful enough to solve a vast range of problems by
giving programmers the chance to employ their skills for
unanticipated programming tasks. Programmers can take on
both roles of a tool user and a tool builder. Eventually by
simplifying behavioral descriptions and variations in such a
way, the valuable data comes to the fore.

In Squeak/Smalltalk, there already is a comparable pro-
gramming interface to work with collections of objects. Con-
sider our Wikipedia example using Smalltalk syntax:
((WebClient httpGet:

’http://en.wikipedia.org/wiki/Unix’) content lines

gather: [:line |

’href="/wiki/[""]*"’ asRegex matchesIn: line])
asSet asOrderedCollection "Remove duplicates.”
sorted "Lexical sort.”
collect: [:url |

(url copyReplaceTokens: ’href="’

with: ’http://en.wikipedia.org’)
allButLast "Remove trailing quote.”].

Basically, it performs the same steps as the shell script;
the result is a list of string objects. However, this functional
composition of message sends and parameters can easily
produce complicated source code when working with soft-
ware artifacts. This example should indicate, that building
graphical tools in Squeak/Smalltalk is not straightforward—
even if there is such a simple yet powerful language concept,
that is, objects sending and receiving messages. Many tool
frameworks for Smalltalk, such as [[1]] and [4], dictate com-
plicated patterns where data processing is overshadowed by
source code for graphical widgets. Can there be comparable
data-driven semantics for graphical tools?

2.3 A Data-driven Perspective on Graphical Tools

We see graphical tools as data processing pipelines whose
intermediate results can be displayed on screen. Software
artifacts are repeatedly transformed and prepared for views;

>> D)

Figure 1. Our data-driven perspective where programming tools
are pipelines processing scripts to transform software artifacts
and prepare them for views.

@ Attiact (| Script -+ Dataflow

Figure 2. Our data-driven perspective applied to Eclipse (left)
and Squeak (right). Software artifacts include projects, files,
classes, and methods.

programmers interactively explore and modify artifacts
through such views. Means of configuration represent the
selection of relevant artifact relationships and the extraction
of characteristic information to reveal an appropriate degree
of insight. Means of combination represent the arrangement
of multiple views, each having particular strengths, that co-
operate and help programmers see problems from different
angles. Means of abstraction represent different groups of
tools and the notion of tool boundaries like it exists in terms
of Eclipse’s perspectives.

The basic idea is illustrated in using our intro-
ductory example; intermediate results are visualized using
list-based widgets. applies our data-driven perspec-
tive to the programming environments Eclipse and Squeak;
each environment consists of rectangular boxes that ex-
change software artifacts and where scripts prepare them
for visualization on screen.

By projecting this data-driven perspective on graphical
tools, we support programmers to focus on their domain-
specific software artifacts. In contrast to usually not self-
explaining interfaces, data-driven tools provide discoverable
cues for the whereabouts and happenings of software arti-
facts. For example, a typical user may reason about the rules
of practice in a graphical user interface like this:

If I click on that file name on the left-hand side, the
environment somehow shows that file’s contents in the
central, editable area. I have to remember that.

In our data-driven perspective, we anticipate thoughts that
focus on artifacts and their projections like this:

188

If I choose that file representing my module in the left-
hand view, this very artifact will flow to the central,
editable view where it is projected to its text-based
contents. I can change that if I want to.

There are already list-based views where programmers
can be in control of their software artifacts because each
artifact has a distinguishable representation on screen. In
our perspective, we can also make the rules of processing
such artifacts explicit and customizable because we establish
discoverable boundaries in the graphical user interface.

3. The Mechanism

In this section, we apply our data-driven perspective to de-
scribe our mechanism that promotes low-effort construc-
tion of graphical tools. Our project is available on GitHub:
https://github.com/marceltaeumel/vivide.

We implemented our framework in Squeak and the fol-
lowing examples will therefore consist of Smalltalk code. As
our inspiration comes from Unix filters and shell program-
ming, we comparably describe our means of configuration,
combination, and abstraction.

3.1 Configuration: Exploring Data and Views

One difficult challenge for tool builders is to select appro-
priate data and appropriate views according to anticipated
domains, tasks, and users. That is why we choose scripts as
means of configuration [29] to decouple software artifacts,
which represent our data, from graphical widgets, which rep-
resent our views. We assume both artifacts and widgets to be,
in some extent, already available in this setting. Basically,
tool configuration via scripts is two-fold: programmers can
(1) extract interesting properties from artifacts and they can
(2) try out different ways to map these properties to features
of widgets. Consider the following script that extracts the
properties selector and timestamp from methods and maps
them to the features text and tooltip:

[:method | { #text -> method selector.
#tooltip -> method timestamp }].

When our framework evaluates such scripts on concrete
artifactsﬁit generates models with nodes for artifacts having
interfaces as defined in the scripts. For this example, widgets
can retrieve a text-like propenyﬂ and a tooltip-like property
from the particular model—if they need other data, they
will have to fall back to defaults. But if programmers know
about those widget’s expectations, they can accommodate by
modifying script code right away.

Script evaluation will be triggered immediately if scripts
change or if artifacts change thus providing a short feedback
loop. To detect artifact changes, scripts can be registered to

6 Scripts are Smalltalk blocks that can receive artifacts either one-by-one or
all-at-once.

7We will not distinguish between properties and features but use the term
properties for the remainder of this paper.

https://github.com/marceltaeumel/vivide

event sources. For example, if programmers write a script
about methods, as listed above, they can use Squeak’s system
change notifier to tell our framework about changes, which
will then re-evaluate that script, update the model, and hence
allow widgets to update their contents, too.

Programmers are free to choose from or switch to any ex-
isting script and widget when facing concrete data. While
scripts can differ in their data processing rules, widgets can
differ in their graphical richness and interactivity as illus-
trated in As for the mechanics, different widgets
will just to talk differently to our generated model; if needed,
programmers can still adapt the script to effectively adapt the
model’s interface.

We think that scripts should not only encapsulate data
projection into widgets but also injection of changes from
widgets back to data sources. That is why the generated
model can not only provide properties but also accept values
that change properties—just like “setters” mirror “getters”
in abstract data types. Consider a modified version of the
example above that now has a rule to rename methods:

[:method | #text -> [method selector]
<- [:value | RenameMethodRefactoring
on: method to: value] J].

One benefit of using Smalltalk as a scripting language is
that programmers can easily store code blocks in the model.
Code allows widgets to update their contents without hav-
ing to re-evaluate scripts and, more importantly, to modify
artifacts. As Squeak provides closures to bind abstract iden-
tifiers to concrete objects, programmers can express the rules
of reading and writing software artifacts in one place.

In the example above, the artifact method is closured in the
respective blocks. Whenever widgets read the text-property,
the first block is evaluated. Whenever widgets write into
the text-property, the second block is evaluated with that
new value. Any side effect introduced by the script, such
as by calling a refactoring engine, is not analyzed by our
framework [

If scripts have to access multiple artifacts that are not
directly related, our framework includes means to provide
them. For example, a piece of text may represent method
source code whose modifications have to be compiled back
into its class; a script can look like this:

[:class :code |
#text -> code
<- [:newCode | class compile: newCode]].

Many tools support browsing some data graph, that is,
they exploit relationships between particular software arti-
facts. This means that scripts should not only prepare data
for views but also perform intermediate transformations. For
example, showing all methods of a class requires transform-
ing that class to its methods first; a script can look like this:

8 However, precautionary script re-evaluation after writing into the model
can ensure updated contents in the tool.

189

.uni_potsdam.hpipt!

Simple Views Elaborate Views

Figure 3. Views on software artifacts vary in graphical rich-
ness and level of interactivity. Tools range from providing plain
text only (left) over additional layers of information (middle,
Eclipse) to very elaborate visualizations (right, [14] and [8]]).

[:class | class methods collect: [:method |

{ #object -> method.
#text -> method selector.
#tooltip -> method timestamp }] J.

In this case, we need to include the object property be-
cause our model stores references to the actual software ar-
tifacts for combining scripts across multiple widgets. Never-
theless, there is syntactic sugar for that, which we will use in
the remaining examples:

[:class | class methods].
[:method | { #text -> method selector.
#tooltip -> method timestamp }].

Effectively, that script does the same things but it hides
some redundancies by separating object transformation
from property extraction steps. Our framework uses the up-
per block to transform classes to methods; then it flattens all
results’linto one list and evaluates the second block for each
method to extract its properties into the intermediate model.
The object property can now be inferred.

The data that is projected via model properties into wid-
gets can differ in their complexity. With simple properties we
mean strings or numbers or any piece of information where
displaying is straightforward. But there may be widgets that
can handle more complex artifacts without having to pre-
pare them in scripts. A method editor widget, for example,
may accept a method (complex) without having to extract
its source code (simple) beforehand. However, we are not
in favor of complex, monolithic widgets but rather small,
combinable ones. Given this, we think of complex proper-
ties being additional widgets embedded in other ones. For
example, imagine a widget that arranges its items in a two-
dimensional grid. A script can provide those items:

[:employee | #item -> (CircleMorph new
radius: employee salary / 100;
x: employee numberOfProjects;
y: employee age;
tooltip: employee name)].

The result would be a two-dimensional point cloud that
may reveal correlation of various employee traits. Again,
the Squeak environment makes it easy to create graphical

9 Smalltalk blocks implicitly return the result of their last expression.

BDFFontReader
BMPReadWiter
BitBit

Bitmap
CharacterBlock mb
CharacterBlockScanner mived:with:
CharacterScanner muchDarker B
Color muchLighter

ColorForm name

ColorMap negated

< teTransfor newTileMorphRepresentative

lightShades:

lighter

luminance

makeForegroundColor
des:

Pane
Pane

orColorUnlike:
) ; @ i A
otz
5 | CursorWithAlpha 3 pixelValueForDepth
5
N z‘ ””””” TRA T
;A @ receere
o R ad .
A\ Method

Figure 4. In our framework, graphical tools consist of cooper-
ating panes, which encapsulate interactive widgets and evaluate
scripts on incoming artifacts.

objects (here: CircleMorph) in scripts. We see this way of
embedding widgets in widgets as a first idea for providing
means of abstraction in graphical tools.

Given some software artifacts for the data input and some
widgets for the graphical output, we have that notion of a
script and a scripting language to describe projection and
injection rules in between. The generated model represents
the data structure that has the interface as expected from
a particular widget. This forms the basis for configuring
graphical tools in our mechanism.

3.2 Combination: Establishing Dataflow

Tool builders are responsible for decomposing the graphical
interface into multiple, interacting widgets. Typically, there
are buttons, lists, charts, or text fields in such tools that co-
operate to help users accomplish particular tasks efficiently.
Our mechanism supports this process of decomposition by
means of combining multiple scripts and their widgets to es-
tablish dataflow.

We provide panes as uniform building blocks, which de-
scribe where to show information on screen. That is, panes
are invisible rectangles with a position and an extent being
placeholders for actual content. Encapsulated in each pane,
there is set of artifacts, a current script, and a current widget.
When new artifacts arrive, the particular pane evaluates its
script and updates the intermediate model for its widget.

Panes can talk to each other as illustrated in
Such communication allows for modeling the dataflow
within one tool and across tools. For each pane, there is an
interaction loop through the widget, which allows users to
influence the dataflow. They can, for example, select which
artifacts to process if widgets support such a selection like
most list-based ones do.

Like user-defined selections, there can be other situations
where widgets may want to talk to our framework. This is
different from the intermediate model, which represents a
scriptable interface to the artifacts. The interface between
widgets and our framework is not scriptable and we argue
that this is not necessary because widgets are unit of reuse.
Preparing a widget to be used in our framework is considered

190

Move Pane Inspect Pane Close Pane
b A *

BDFFontReader

abulari BMPReadWriter

BitBIt

Bitmap
CharacterBlock s
CharacterBlockScanner
CharacterScanner

Files lightShades:
lighter
luminance

imakeForegroundColor

[

Fonts
GetText
mix:shades:
mixed:with:
imuchDarker

Gofer-Core
Graphics E
GraphicsTests

Help-Squeak-Projeet————————-

L

=

ColorForm
ColorMap
CompositeTransform
CompositionScanner
ComerRounder
HelpSystem-Tests Cursor

m CursorWithAlpha

Help-Squeak-TerseGuide
HelpSystem-Core
HelpSystem-Core-Model
HelpSystem-Core-Ul
HelpSystem-Core-Utilities

name
negated
newTileMorphRepresentative
orColorUnlike:

paler

pixelValue32
pixelValueForDepth:

Incoming Artifacts
Outgoing Artifacts

M)
Resize Pane

|® Classes

Browse, Edit, Copy Script(s)

Figure 5. With a single mouse click, a halo over that pane ap-
pears and reveals buttons to access and modify scripts, dataflow,
and layout.

a one-time effort. As mentioned above, the object property
in the model stores a reference to the artifact; widgets do
only know about model nodes and not about the artifacts.

If we want tool users to be also tool builders, there should
be a simple way to switch between both roles. That is why
we provide direct access to tool components, that is, panes
with scripts and dataflow settings. In Squeak, we can employ
halos, which represent a user interface to explore and edit
properties of graphical items, so-called morphs. A dedicated
user input, typically just a mouse click, reveals a pane’s

custom halo as shown in

Layout Programmers can modify a pane’s position and ex-
tent to effectively control the space that widgets occupy.

Scripts Programmers can access and modify the current
script as well as the pane’s script database.

Dataflow Incoming connections are shown in blue at the
left side of a pane. Outgoing connections are shown in
green at the right side of a pane. Programmers can add or
remove such connections via drag-and-drop or click.

Internals Programmers can inspect a pane’s internals for
debugging purposes. This represents a link to the under-
lying Squeak environment.

This part of our mechanism does not depend on the reflec-
tive capabilities of live programming environments. Many
window managers already provide elaborate means of con-
figuring and combining the layout of graphical tools.

The more complex a tool is, the more complex is also
its dataflow. It may not be just one linear stream of data
anymore. In Unix, there is a filter called tee, which allows
for forking streams. Consider the following example that
downloads a file and also stores its SHA-1 hash value while
doing so:

curl https://www.debian.org/amd-64/debian-7.6.0.iso \

| tee >(shalsum > debian-7.6.0.shal) \
> debian-7.6.0.iso

Our framework supports forking and joining dataflow to
some degree. A pane can have multiple incoming and out-
going connections from and to other panes. Scripts will re-

Filter

; Packages

Changes

phic
CommandShell-Morphic

[Morphic

PluggableScrollPane>>m
| Plugg:

....... ¥
Morph>>addMorph:after: (change

stamp) |7

v Diff
addATMorphs: acollection after: anotherMorph
IMorphs: atollect ion

............. Me ssage :
Extended interface for adding or
removing multiple morphs at once|

Figure 6. Exploded view of a code commit tool. Arrows illus-
trate forks and joins of dataflow between widgets.

ceive tuples of artifacts in the order of the connections. If
panes provide more than one artifact, n-tuples will be formed
like the Cartesian product in set theory. As our scripts are
Smalltalk blocks, appropriate blocks have to support suffi-
cient parameters. Imagine one pane providing classes and
another one providing categories; a script can transform both
into methods like this:

[:class :category | {

class.

class organization listAtCategoryNamed: category }].
[:class :selector | class compiledMethodAt: selector].

The upper part takes a tuple of (class, category) and
implicitely transforms it into many tuples of the form
{(class, sely), ..., (class, sel,)}. The lower part takes all
tuples and transforms them into actual method objects.

For a bigger example, consider [Figure 6 A tool for stor-
ing source code in a remote repository has more complex
dataflow characteristics. The user has to make three inputs
before hitting the commit-button: choose a package, choose
a repository, and enter a message. All three artifacts are nec-
essary before the commit action can take place; the pane with
that button performs the join of data. Forks are used to, for
example, show versions in the repository and a diff to the
head version. The scripts are listed in the appendix.

Panes can manage multiple scripts. When new artifacts
arrive, there is a dispatch between scripts according to some
associated type information. This means that tools can be
designed to reuse certain panes by writing scripts for par-
ticular kinds of artifacts. For example, the standard Squeak
class browser has four different ways of showing
code in its big text box: a template for a class definition, an
actual class definition, a template for a method definition,
or an actual method definition depending on whether a class
category, a class, a method category, or a method flows into
that pane.

Given the panes as uniform and interacting building
blocks configurable via Morphic halos, programmers can
combine them to build tools with flexible dataflow patterns.

191

3.3 Abstraction: Graphical Tools as “Gray Boxes”

Typically, abstraction means hiding details and reducing
one’s knowledge to some rough understanding. Names are
sufficient to think about further ways of configuring and
combining abstract concepts. Different layers of abstraction
support modularizing complex tools; one does not always
have to remember every detail.

Unix filters represent such named abstractions. They can
be C programs or other shell scripts; programmers do not
bother but focus on the general purpose, input, and output.
We call this a black-box perspective.

We argue that, for the graphics-based world, informa-
tion hiding is neither fully possible nor desired. There is
always something to see from graphical tools that are used
by other—more abstract—graphical tools. For example, wiz-
ard dialogs are typically used to guide users through some
complicated configuration process, but another tool will then
build upon those inputs. Graphical tools are appreciated for
their visuals and interactivity; hiding those virtues seems un-
reasonable. At most, one could take on a gray-box perspec-
tive where some internals are hidden but the graphics are
not. Still, abstraction is important because script code and
dataflow characteristics can get quite complex and tools can
benefit from proper modularization.

Our mechanism has two complementary means of ab-
straction: one for scripts and one for panes. In conjunction,
they allow for hiding details and reusing tool components
created with our framework.

Each script can have an identifier to reference it in other
scripts. Such references are resolved in a script database,
which can be local to a pane, a tool, or the whole environ-
ment. For example, the following script extracts some de-
fault properties (text, tooltip, icon) for artifacts:

[:object | {
#text -> object asString.
#tooltip -> object class asString.
#icon -> (object isMorph

ifTrue: [object imageForm scaledToSize: 16016]
ifFalse: ["No icon."1) 3}].

Now, we give that script the identifier defaultProperties
and use it in another script that extracts all childre of a
morph:

[:morph | morph submorphs].
#defaultProperties.

This way of abstracting from script code is similar to
messages in object-oriented code, which abstract from actual
method implementations. For now, we use a single database
to look up script identifiers so we can share them between
all tools in the environment. This eases emergent tool design
as described later in this section.

Besides hiding script code with script identifiers, our
framework supports grouping and encapsulating multiple

10We discuss the creation of hierarchical models in

panes as graphical means of abstraction. We provide so-
called multi-pane widgets to manage such groups of panes.
Such widgets expect a model that provides scripts, layout in-
formation, and dataflow specifications. For example, a script
that produces such a model for configuring the three panes
as in can look like this:

[:object | {

#id -> #left. #in -> #(outer). #out -> #(middle).
#script -> #packages. #bounds -> #(0 0 200 250) }].
:object | {

#id -> #middle. #in -> #(left). #out -> #(right).
#script -> #classes. #bounds -> #(200 0 200 250) }].
:object | {

#id -> #right. #in -> #(middle). #out -> #(outer).
#script -> #methods. #bounds -> #(400 0 200 250) }].

—

—

These are three subsequent property extraction blocks in
one script to describe three panes. In the model nodes, those
properties will not overwrite each other but get a running
number such as id_1, id_2 and id_3.

The properties id, in, and out specify the dataflow. As
mentioned above, panes can have multiple incoming and
multiple outgoing connections to other panes. The pane
identifier #outer is reserved and refers to the outer pane,
which contains this multi-pane widget. The property script
refers to a script identifier that will be looked up, which can
be a specification for another multi-pane widget. Note that
every script is associated with a preferred widget to be ini-
tialized with in panes; it is a multi-pane widget in this case.
Programmers can change that. They could also use other
widgets for this script but those may not find any useful data
in the generated model.

In our framework, the outermost pane is embedded in
a window, which represents a tool boundary. There can be
many windows that have such panes as their sole contents.
This is specific for Squeak and not part of our mechanism;
other environments may provide different high-level tool
containers. Indeed, panes can talk to each other across con-
tainer boundaries. Such data-driven communication chan-
nels can be established ad-hoc (Figure 3)). We argue that tool
integration becomes straightforward.

Our mechanism describes a kind of graphical abstraction
layer that can be inserted between other any other one. At
the one end, a pane being a graphical item is part of some
container. At the other end, a pane itself is a container for
other graphical items. There can be an arbitrary alternation
between different implementation strategies in the whole
graphical hierarchy. Widgets do not have to be aware of
being host for some panes as long as they provide means
to embedd new graphical items. For example, the following
script provides additional panes for each artifact:

[:object | #item -> (Pane new
objects: {object};
script: #defaultProperties)].

Our mechanism also describes a kind of programmati-
cal abstraction layer. The scripts are evaluated with data-
driven semantics; within each script, there is object-oriented

192

[PackageOrganizer default pe *
Gofer-Core

Artifacts: mixed:with: (Color) x
[(DGraphies] nuchDarker
L. GraphicsTests
Classes > Methods -

BDFFontReader 7| lightShades:
BMPReadWriter 7 lighter

BitBIt luminance

Bitmap makeForegroundColor
CharacterBlock mixshades:
CharacterBlockScanner | mixed:with:
muchDarker
muchLighter

name

~ self alphaMixed: 8.5 with: Color black

nuchLighter

~ self alphaMixed: 8.233 with: Color white

CharacterScanner
[Color]
ColorForm

ColorMap

Figure 7. Panes embedded in overlapping windows. Regular
widgets (left) support dragging and our artifact list widget (right)
supports dropping and hence cherry picking artifacts.

code. Even without creating graphical tools, programmers
can switch between both paradigms as needed. Consider the
following example that evaluates a script from within object-
oriented code:

| script colors morphs |

script := Script newFrom: {
[:colorName | Color fromString: colorName].

[:color | {color. RectangleMorph newl}].
[:color :morph | morph color: color] }.
colors := #(red green blue yellow).

morphs := script evaluate: colors.

Here, the script transforms color names to real color ar-
tifacts, creates pairs of color and new rectangle, and finally
sets the color of these rectangles. We are still experimenting
with the cooperation of both programming paradigms.

Given the flexibility of our scripts and multi-pane wid-
gets, programmers can encapsulate tool components and
reuse them in different scenarios while preserving their co-
hesion.

3.4 Data-driven Tool Development

We envision emergent tool designs. Our framework supports
programmers to be both tool user and tool builder. Given
that we keep the overhead for switching between roles mini-
mal, there may be no dominant role anymore. When working
with concrete artifacts, programmers can create and mod-
ify scripts, try out various widgets, and combine them to
efficiently use the screen real estate. There is arguably the
chance that tools just happen to be built while programmers
focus on processing their domain- and task-specific data.

The traditional approach of tool building is more an-
ticipatory. Tool builders have assumptions about target do-
mains, tasks, and users. However, their tools are typically
not meant to be extensively re-programmed by the users but
only slightly adjusted. Users depend on their tool builders
for making bigger adaptations; our mechanism tries to re-
move exactly that dependency and improves unanticipated
scenarios.

We propose a tool building approach that allows for
dynamically working with artifacts, widgets, panes, and
scripts. Tools are molded iteratively while they are running.
At the beginning, programmers may only have a single arti-
fact at hand and evaluate an appropriate script, be it freshly

written or looked up in a database, on that artifact. Through
continuous interaction with widgets and scripts, a concrete
design for that graphical tool can emerge.

Cherry picking interesting artifacts can further promote
such unanticipated tool building activities as shown in [Fig]
We created an artifact list widget that supports a way
of collecting and arranging artifacts via drag-and-drop. Ef-
fectively, this widget injects new artifacts into the pipeline.
Scripts can associate artifacts to graphical items—such as
interactive editors—that will be arranged in the widget:
[:object | #item -> (object isCompiledMethod

ifTrue: [MethodEditor]
ifFalse: [TextEditor]) 1.

In our implementation, dropping artifacts behind all win-
dows on the background spawns a new window that has a
single pane with such an artifact list widget. Using the pane’s
halo (Figure 5), programmers can start writing scripts for the
collected artifacts and try-out different widgets. The process
of unanticipated tool building may begin [35].

4. Example Case: Program Comprehension

In this section, we explain a case about program compre-
hension to emphasize the advantage of having a data-driven
perspective on graphical tools and our framework that sup-
ports low-effort tool creation and adaptation. The challenge
of comprehending abstract source code in complex software
systems is part of many programming tasks ([19], [32]).

4.1 Setting

The programmer works in the Squeak/Smalltalk environ-
ment. The domain in this example is a game where the player
has to quickly place pipelines on a playfield’s grid to carry
a stream of water from a spring to a drain without spilling it
all over the field.

The story has three parts: (1) traditional debugging, (2)
run-time tracing, and (3) social collaboration. Typically, the
execution of a program is interrupted if something goes
wrong; a single execution state can be explored. Then, there
are research projects that support browsing multiple execu-
tion states such as [30]]; those have to be integrated. Finally,
a colleague or the author of a system part can be asked [34]]
to balance problem solving efforts.

Consider the following restriction to better understand the
programmer’s decisions. At the beginning, there are means
of executing Smalltalk code in a workspace and only two
tools available: one for exploring object state (left) and one
for browsing objects’ known messages (right):

QObject Explorer: a Process in PIPlayfield = = Methods (Signatures): ContextPart (Kerr= =

sourceCode

~ suspendedContet PIPlayfieldTest(TestCase)> »signalFzi [stack
stackOfSize: limit
» sender = PIPlayfieldTest(TestCase)> »assert: | swapSender. coroutine
»pc L9 b tempNames

tempsAndValues
tempsAndValueslimitedTo: sizelimit indent: indent

[stackp D2 }

¥ method (TestCases »#signalFailure: "a Compi tallylnstructions: aBlock
closureOil il i

» receiver PIPlayfieldTest> » StestTopLeftField

4.2 The Conventional Programmer

A test execution fails. The corresponding process is sus-
pended and the programmer can explore its state. As there
are many distracting details, she decides to write a script
that extracts the current call stack. In that list, she dis-
covers the name of the failing test: testTopLeftField in
P1PlayfieldTest. Now, she wants to browse the source code
for each call in the stack and therefore writes another script
for a text box. There, she discovers that the final assertion
fails; the prior replacement of pipes must have been failed.
She wonders whether replaceBy: works as expected and
decides to look into that call. For this, she has to control
the process object and hence writes a script that allows for
unwind, step into, and step over stack frames. Within that
method, a suspicious check canBeReplaced on the incoming
pipe object seems to work fine.

Looking at the screen, she happened to build a conven-
tional debugger:

Process Stack > Code > Controls = x
o opp | PPesfiddTestTestCase)>>signalFalure: || testTopLeftField
. PIPlayfieldTest(TestCase)> > assert: t
[PIPlayfieldTest> > testTopLeftField “tests, uhether the playfield's topLeftField is

PIPlayfieldTest(TestCase)> > performTest

(Jin []in PIPlayfieldTest(TestCase)>>runCase

BlockClosure> > on:do:

[1in PIPlayfieldTest(TestCase)> >timeout:after:

BlockClosure> > ensure:

PIPlayfieldTest(TestCase)> > timeout:after:

[Jin PIPlayfieldTest(TestCase)> > runCase

BlockClosure> > ensure:

PIPlayfieldTest(TestCase)> > runCase secec P
i

correctly updated uhen it has been replaced”
| pipe |
pipe := PlBendPipe new.
(playField fieldAtPoint: 8@8) replaceBy: pipe.

self assert: (playField topleftField = pipe).

op | Rewind |Steplnto | Step Over

4.3 The Eager Programmer

She notices the argument oeo and wonders whether the grid
starts with the point 1e1 in its upper-left corner or not. As
this project seems to provide a pretty good test coverage,
she tries out a recent research project [30]] that allows for
tracing test executions and collecting data such as receivers,
arguments, and return values. Luckily, she does not have to
struggle with integrating a new graphical tool but only has to
write a new script for that already visible fieldAtPoint: call
in the debugger. She extracts the argument names into a list
to have a more convenient browser for her run-time artifacts.
The research project already provides a quite convenient
interface for the script. After seeing all those point objects,
she discovers that there are other tests using o with success.
The bug has to be somewhere else.

Looking at the screen, she happened to build another tool
that can be connected to her previous debugger to explore
arguments:

Arguments > Objects x
Playfield>>fieldAtPoint: eesee 2Point]

PlayfieldTest> >testTopLeftField
PlayfieldTest(TestCase)> > performTest

n]in PIPlayfieldTest(TestCase)>>runCa
ockClosure>>on:do:

n PIPlayfieldTest(TestCase)> >timeout:aft
ockClosure> > ensure:
PlayfieldTest(TestCase)> >timeout:after:

0@0|1@0/0@1(1@1 3@1 3@3 2@5 4@1 1@2 ‘:
6@1 2@2 5@2 1@3 2@1 7@3 3@4 7@4 8@1

8@4 5@5 7@1 1@6 6@3 2@6 4@2 3@6 4@4

4@6 5@6 8@6

v

4.4 The Social Programmer

Finally, she wants to ask her colleagues who may have
worked on the same part of the project. After quickly es-
tablishing an XMPP connection to her company’s Jabber
server, she writes a script that filters the user list by all pre-
vious authors of the selected method. As her colleagues use
different nicknames for chatting than for committing code,
she maps them in the script as she recalls. Only Dave seems
to be available. She writes an additional script to show the
chat history; it is stored locally. The script is registered for
notification by the XMPP connection; on an incoming mes-
sage, the history is updated and the script re-evaluated. Af-
ter adding a text input field and a button for sending the
message, she wants to start chatting. But she hesitates and
remembers a research project about code chats [34] where
messages can be directly associated to code artifacts. Hav-
ing the debugger still visible, she connects its stack list to
the button. In the script, she associates the message to the
selected code artifact. She talks a little bit with Dave and
finds out that this particular test is expected to fail. As a re-
sult of her programming task, she flags that test accordingly.
Looking at the screen, she happened to build a small chat
tool that supports talking to code authors about methods:

.
Roaster > Mistory > Message > Send %
Bob
[®Dave |
Max

Connection

..... od’e ?’
ey Dave! I have a question about your code.

Yeah, what is it?
- PIPlayfieldTest >> testTopLeftField
Why does this test fail? I don't have a clue...
- PIAbstractField >> replaceBy:
fAh! This is work in progress. Won't pass. The
notification to the playfield is still missing. .

est(TestCase)> > signalFa
Test(TestCase)> > assert:
Test>>testTopLeftField ® *¢° ®
Test(TestCase)>>perform T
PlayfieldTest(TestCase)> > rg.
re>>on:do: .
fieldTest(TestCase)> >timecq

.

.

.

.

.

>>ensure:

Okay. Iwill flag it as expected failures ® ¢ Send Message| e ¢
A

5. Discussion

In this section, we discuss how our mechanism compares
with traditional tool architectures, whether our scripting ap-
proach has reached its limits, and to which extent not-so-
reflective environments may have more difficulties in pro-
viding a similar tool construction framework.

5.1 Revising the Past’s Efforts

The existing tools for Squeak have a long history: much
software engineering effort has been expended, many id-
ioms and patterns have been applied. The designs range
from rather monolithic ones to composite ones. Monolithic
tools, on the one end, may coalesce all features in very few
classes, which decreases cohesion per class and impedes
code comprehension. For example, Squeak 4.4 employs only
six classes to implement code browser, debugger, and object
inspector with about 4500 lines of Smalltalk codeE] Com-
posite designs, on the other end, may specify custom classes

! The reader can complement an understanding of Smalltalk’s expressive-
ness by studying comparative discussions such as http://c2.com/cgi/
wiki?JavaVsSmalltalk

194

1000 W Standard Replica
500
-80% -75%
0
Code Browser Debugger

Figure 8. Lines of Smalltalk code that projects artifacts’ data
into widgets. We compare standard tools in a Squeak 4.4 image
with our replicas.

even for single artifacts, which increases coupling per class
and impedes code comprehension, too. For example, the
OmniBrowser [[1] framework wraps concrete artifacts in ab-
stract nodes and the Glamour [4] framework wraps concrete
widgets in abstract presentations. How do we compare with
those designs considering lines of Smalltalk code?

We reimplemented two of the most important tools that
programmers use frequently: the code browser and the de-
bugger. Code browsers provide access to classes and meth-
ods and thus source code. Debuggers provide access to a par-
ticular execution stack and thus source code and run-time
state. We only considered the projection of those artifacts to
widgets and no injection of any change.

The code browser has 3 classes: StringHolder, CodeHolder,
Browser. The debugger has 5 classes: StringHolder, Code-
Holder, Debugger, Inspector, ContextVariablesInspector. Hav-
ing this, some classes are shared via inheritance; the debug-
ger is associated with two inspectors. For initialization, both
tools use Squeak’s fool builder, which provides a declarative
interface for describing the graphical layout and callbacks.

In order to rebuild those tools, we adapted the standard
tool builder to support our panes, scripts, and dataflow setup.
We also created two wrapping classes to make the standard
list and text widgets talk to our generated model and to our
framework. In sum, we wrote about 170 additional lines
of Smalltalk code in five additional classes to be prepared
for building any graphical tool that uses standard lists or
text boxes. For extracting artifacts’ properties, we copied as
much code as possible and also inlined methods into scripts.

In our replicas, we counted all the script code. In Squeak’s
tools, we looked for methods that mainly deal with artifact
reading and counted all their lines. As Smalltalk methods are
usually small, the risk of counting other tangled features was
small, too. The actual counting algorithm performed the fol-
lowing steps with blocks and methods: (1) apply consistent
Smalltalk code formatting, (2) remove comments and blank
lines but keep method headers if any, and (3) count the re-
maining lines.

With our framework, we managed to reduce the amount
of code up to 80%. Figure[§] visualizes the results. The main
reason is their declarative, data-driven structure without
having to handle intermediate representations. Then, using

http://c2.com/cgi/wiki?JavaVsSmalltalk
http://c2.com/cgi/wiki?JavaVsSmalltalk

many methods influences this number because each method
has one line signature. For both standard tools, this results in
159 additional lines. We saved several lines because we had
to merge several methods from the standard tools’ code into
single scripts.

The standard code browser includes many lines that pre-
pare intermediate data structures for the widgets. This in-
cludes lists of strings and means to map indices in those lists
back to their software artifacts.

The standard debugger is somewhat smaller than the code
browser. Both share some classes by inheritance, but the
debugger also employs composition with two inspectors,
which themselves reuse code to access object state. Given
this, we reused script code for inspecting object state, too.

The goal of this comparison is not primarily to show that
our approach supports to reduce the code base for existing
tools per se. It should serve merely as an indicator for how
low the effort of building new tools can be. We do not
expect programmers to replace well-designed and practical
tools already available but to build custom ones tailored to
particular domains, tasks, or personal preferences.

5.2 To Script, or Not To Script

Graphical tools are, basically, adapters that describe map-
pings between the artifacts’ interfaces and the widgets’ ones.
We presented a framework, which allows for scripting those
interfaces to support low-effort modifications. With that
framework, we also introduced additional interfaces; not all
of them have the property of being scriptable:

Artifacts <+ Widgets The interface between artifacts and
widgets is manifested in the model, which is generated
by our framework using user-defined scripts. Both kinds
of rules for (1) projecting data to widgets and for (2)
injecting their changes back are supported.

Artifacts <> Our Framework As for our scripting lan-
guage being Smalltalk, scripts will have full access to
artifacts if those are represented as regular Smalltalk ob-
jects in the environment. If there is also an event source
in the Smalltalk environment that signals object modifi-
cations, scripts will be able to register and to trigger their
re-evaluation consistently.

Widgets <> Our Framework The interface between wid-
gets and our framework is not scriptable but hard-
wiresz] In contrast to artifacts, we consider widgets as
unit of reuse; interface adaptation is only required once.

For example, we created wrapping classes to reuse plug-
gable widgets from Squeak for our quantitative comparison
as described above. We had to describe the rules of using
our generated model and of providing user selections for our

interaction loop (Figure 4). We argue that this is, to some ex-

12 They are still modularized and decoupled in an object-oriented sense but
programmers will have to dig into the respective code base to modify.

195

tent, comparable to the fact that the text-based nature of ter-
minal output in Unix environments is typically not an issue.
There is no need to adjust this level of interactivity ad-hoc.
Scripting is not required for this. Another example for hard-
wired interactions between a widget and our framework is
artifact list widgets (Figure 7): they allow for the insertion
of new artifacts into the pipeline.

Scripting itself is not always straightforward in our
framework. Although Smalltalk is powerful and expressive,
we are still investigating ways to describe tree-structured
models and artifact-independent properties. At the moment,
trees with a specific depth can be described by alternating
transformations with property extractions:

[:addressBook | addressBook persons].
[:person | #text -> person name]. "lLevel 1"

[:person | person friends].
[:friend | #text -> friend name]. "Level 2"

Recursive structures with varying, maybe infinite, depth
can be described using a reference to the very same script,
which effectively means a cycle during its evaluation:
[:morph | morph submorphs]. "id: #submorphs”

[:morph | #text -> morph name]. "Level 1..n"
#submorphs.

As for artifact-independent properties, there can be meta-
data associated with scripts and widgets may access the
underlying script in the generated model. However, constant
values can be stored in the model like the scripts for our
multi-pane widgets do.

Considering the way models provide information for wid-
gets, we also think of other ways than just mirroring. For one
idea, there may be stateful widgets that do not discard their
internal caches after each model update but rather see mod-
els as incremental information providers with a stable inter-
face. For another, maybe complementary, idea, script evalu-
ation may be asynchronous, which would better reflect the
execution model of Unix’ pipes and filters and which would
allow for data generators and stateful scripts.

5.3 The Benefits of a Live Programming System

As mentioned in the beginning of this paper, we use live pro-
gramming systems such as Squeak/Smalltalk as a baseline
for open challenges and as primary target for our mecha-
nism. However, one could also implement a similar frame-
work in static, not-so-reflective, compiler-based environ-
ments. To outline the things that may be more difficult to
provide in those environments, consider the following situa-
tions where having a live programming system was benefi-
cial to us:

® There is only one space for all objects in the environment;
run-time is omnipresent. Scripts can fully access and
process that object space.

® Basic programming tools such as code browser and de-
bugger can be described with scripts for ClassDescription,
CompiledMethod, Process, O MethodContext instances.

e We can use scripts in a meta-circular way: the rules of
reading and writing scripts can be described with scripts.
We treat scripts as software artifacts of their own right.

e Faulty scripts can interrupt tool updates only to a limited,
comprehensible extent. Panes will display a small excla-
mation mark indicating the problem; programmers can
debug that later with the help of continuations.

e The Morphic framework with its halo concept represents
a simple user interface for modifying a tool’s internals.

We argue that our mechanism can support the construc-
tion of graphical tools with low effort in other environments,
even for the limited artifact spaces, more restricted scripting
languages, or less interactive graphics.

6. Related Work

Our approach supports data-driven, scriptable tool creation
with low effort. One important use includes programming
tools that organize coherent software artifacts according spe-
cific domains, tasks, or personal preferences. Finally, our
data-driven perspective touches the idea of direct manipu-
lation interfaces.

6.1 Data-driven Application Development

The idea of data-driven approaches for building graphical
applications manifested itself long time ago in the domain
of visual programming such as Fabrik [17] and its web-
based successor LivelyFabrik [23] do. The programmer
can combine scriptable, graphical components and establish
dataflow in between. More recent research projects include
KScript [27], which employs functional reactive program-
ming with declarative, data-driven constructs for building
graphical applications.

There are also industry-focused projects such as [33],
which combines ActiveX and JavaBeans components as
filters into graphical interfaces. As spreadsheet program-
ming is also considered straightforward, the ActiveSheets
project [38] explores the possibilities of stream processing
and visual output in Excel.

Our approach targets programmers but not necessarily
the professional ones. We explicitly appreciate the combina-
tion of different language concepts such as object-oriented
programming and data-driven scripting. In contrast to the
projects mentioned, we consider means of abstraction to fa-
cilitate the construction of more complex tools.

6.2 Organization of Coherent Software Artifacts

Typically, programming tools provide views that align with
the language representation. Consequently, no appropriate
views exist if concerns crosscut the dominant system de-
composition such as methods do that are spread across the
class hierarchy. There are research projects that use semi-
automatic approaches to provide those missing views.

196

Feature localization [[13]] identifies coherent source code
locations that implement specific functionality in a software
system. For example, UseCasePy [16] discovers from an-
notated acceptance tests the relevant methods that imple-
ment a particular use case. Another way of accessing rele-
vant artifacts is to manually enhance the program descrip-
tion; TagSEA [36] allows programmers to attach way points
like comments to the source code and provides tool support
to query these for navigation. Mylyn [18] automatically cap-
tures programmers’ activities and captures their working sets
according to a degree-of-interest model. This knowledge re-
duces the information overload for similar tasks and helps
developers to focus on selected software artifacts.

All those projects target also user interface integration
although their main focus lies on the collection of supportive
data. With our approach, we can provide means to decouple
such data providers from visualizations. Programmers are
free to decide where to make use of those additions in daily
work.

6.3 Source Code Query Languages

There are domain-specific languages that support program-
mers to query the source code base for particular software
artifacts. Scripts are typically exposed in the environment’s
user interface and can hence be used for in-situ tool adapta-
tion.

Jquery [[L1]] builds a fact database of the system under ob-
servation, which can later be queried in a declarative manner.
The results are presented in a custom project outline view.
CodeQuest [[15] combines relational databases and logic pro-
gramming in form of safe Datalog to provide an efficient and
scalable code querying system. SOUL [10] is a logic query
language for Java programs that is integrated into the Eclipse
development environment. The evaluated queries are then
displayed as intentional views [25]] that show all artifacts of
one crosscutting concern on the screen.

Those languages are not useful for configuring visual out-
put but only for filtering the relevant data. We use Smalltalk
as a scripting language and are able to describe the inter-
face of the generated output, which will be used by widgets.
Additionally, our scripts provide means to encode the rules
of injecting changes back to the data; we argue that this is
essential for building useful programming tools.

6.4 Direct Manipulation Programming Environments

Programming environments are extensible software systems
par excellence. However, there are many research projects
that question fundamental interaction and extension con-
cepts to reduce context switches and promote direct inter-
actions with relevant software artifacts.

Hopscotch [5] is a user interface composition frame-
work for the Newspeak programming environment [2]. It
provides an abstraction for browsing and modifying many
software artifacts of interest concurrently within the same
programming activity. This is difficult to achieve in tradi-

tional programming environments that either focus one ar-
tifact at a time or show many redundant information when
having many windows open at once. Code Bubbles [3] is a
novel user interface that summarizes working sets in form
of multiple lightweight editable fragments, called bubbles,
that group the different software artifacts on one screen. So,
developers see all related program entities at once in order
to completely focus on their specific development task. De-
bugger Canvas [12] extends the Code Bubbles approach to
support industrial debugging scenarios. Developers debug
their code within multiple bubbles representing code snip-
pets, call paths, and parameters on an open two-dimensional
pan-and-zoom interface. Also, Gaucho [28]] builds on Code
Bubbles and offers a complete object-oriented programming
environment.

Those projects typically favor direct manipulation of ar-
tifacts but do not consider programmatic access to them.
Whenever such an interaction concept interferes with the
programmer’s intents, adaptation is not easily possible.
There are recent projects such as The Moldable Debug-
ger [6], which supports re-programming debuggers in use.
Our mechanism tackles that challenge by attaching scripts
to any set of manually or automatically collected artifacts.

7. Conclusion

So far, we use our own framework and several scripts to it-
eratively improve the very same implementation. Being fre-
quent users of our own approach, we formulated the follow-
ing three hypotheses as a starting point for future investiga-
tions:

H1 - Applicability If programmers can modify running
tools easily, none of the roles—neither tool builder nor
tool user—will dominate the tooling process because
each can switch to the other as needed.

H2 - Efficiency If programmers constantly modify their
own tools, they will achieve a high degree of proficiency
and hence need less time by making fewer errors.

H3 - Modularity If providers for data or widgets target our
approach, their components will be more reusable and
extensible relying on the programmers being the ones
who can integrate those with reasonable effort.

Live programming systems such as Squeak/Smalltalk
provide short feedback loops to promote iterative, low-effort,
and high-quality tool construction. Programmers can mod-
ify pieces of source code and immediately observe changed
behavior in running programs. Graphic frameworks such as
Morphic [24] leverage this idea for programs with interac-
tive, visual output. Programmers can directly explore and
adapt graphical objects and hence shape the user experience
as desired.

With our data-driven perspective, we proposed a novel
mechanism to further facilitate the idea of modifying the
tools in use and applied it to a range of graphical tools for the

197

programming domain. Given this, programmers can perceive
the requirements for being both tool user and tool builder
differently. We think that this perspective on graphical tools
can inspire the creation of new trade-offs in modularity for
both data-providing projects and interactive views.

Acknowledgments

We wish to thank Richard P. Gabriel, Tim Felgentreff, To-
bias Pape, Stephanie Platz, Marko Roder, and Lauritz Tham-
sen for valuable feedback. We gratefully acknowledge the
financial support of HPI’s Research School'”|and the Hasso
Plattner Design Thinking Research Program

References

[1] A. Bergel, S. Ducasse, C. Putney, and R. Wuyts. Creating So-
phisticated Development Tools with OmniBrowser. Elsevier
Computer Languages, Systems & Structures, 34(2):109-129,
2008.

[2] G. Bracha, P. von der Ahé, V. Bykov, Y. Kashai, W. Mad-
dox, and E. Miranda. Modules as Objects in Newspeak. In
Proceedings of the European Conference on Object-oriented
Programming (ECOOP), pages 405-428. Springer, 2010.

[3] A.Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung,
J. Kaplan, C. Coleman, F. Adeputra, and J. J. LaViola Jr.
Code Bubbles: Rethinking the User Interface Paradigm of
Integrated Development Environments. In Proceedings of

the 32nd International Conference on Software Engineering
(ICSE) Volume 1, pages 455-464. ACM/IEEE, 2010.

[4] P. Bunge. Scripting Browsers with Glamour. Master’s thesis,
University of Bern, 2009.

[5] V. Bykov. Hopscotch: Towards User Interface Composi-
tion. In Proceedings of the Ist International Workshop
on Academic Software Development Tools and Techniques
(WASDeTT). Springer, 2008.

[6] A.Chis, T. Girba, and O. Nierstrasz. The Moldable Debugger:
A Framework for Developing Domain-Specific Debuggers. In
Proceedings of the 7th International Conference on Software
Language Engineering (SLE), 2014.

[7] T. A. Corbi. Program Understanding: Challenge for the 1990s.
IBM Systems Journal, 28(2):294-306, 1989.

[8] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. J.
Van Wijk, and A. Van Deursen. Understanding Execution
Traces Using Massive Sequence and Circular Bundle Views.
In Proceedings of the 15th International Conference on Pro-
gram Comprehension (ICPC), pages 49-58. IEEE, 2007.

[9] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke. A Systematic Survey of Program Comprehension
Through Dynamic Analysis. IEEE Transactions on Software
Engineering, 35(5):684-702, 20009.

[10] C. De Roover, C. Noguera, A. Kellens, and V. Jonckers. The
SOUL Tool Suite for Querying Programs in Symbiosis with
Eclipse. In Proceedings of the 9th International Conference

13www.hpi.uni—potsdam.de/research_school

4 yww.hpi.de/en/research/design-thinking-research-program

www.hpi.uni-potsdam.de/research_school
www.hpi.de/en/research/design-thinking-research-program

on Principles and Practice of Programming in Java (PPPJ),
pages 71-80. ACM, 2011.

[11] K. De Volder. JQuery: A Generic Code Browser with a
Declarative Configuration Language. In Practical Aspects of
Declarative Languages, pages 88—102. Springer, 2006.

[12] R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen, and S. P.
Reiss. Debugger Canvas: Industrial Experience with the Code
Bubbles Paradigm. In Proceedings of the 34th International
Conference on Software Engineering (ICSE), pages 1064—
1073. ACM/IEEE, 2012.

B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. Fea-
ture Location in Source Code: A Taxonomy and Survey. Wi-
ley Journal of Software: Evolution and Process, 25(1):53-95,
2013.

S. Hahn, J. Triimper, D. Moritz, and J. Dollner. Visual-
ization of Varying Hierarchies by Stable Layout of Voronoi
Treemaps. In Proceedings of the 5th International Confer-
ence on Information Visualization Theory and Applications
(IVAPP). SCITEPRESS - Science and Technology Publica-
tions, 2014.

[15] E. Hajiyev, M. Verbaere, and O. De Moor. Codequest: Scal-
able Source Code Queries with Datalog. In Proceedings of
the European Conference on Object-oriented Programming
(ECOOP), pages 2-27. Springer, 2006.

[16] R. Hirschfeld, M. Perscheid, and M. Haupt. Explicit Use-case
Representation in Object-oriented Programming Languages.
In Proceedings of the 7th Symposium on Dynamic languages
(DLS), pages 51-60. ACM, 2011.

[17] D. Ingalls, S. Wallace, Y. Chow, F. Ludolph, and K. Doyle.
Fabrik: A Visual Programming Environment. ACM SIGPLAN
Notices, 23(11):176-190, 1988.

[18] M. Kersten and G. C. Murphy. Using Task Context to Improve
Programmer Productivity. In Proceedings of the 14th Inter-
national Symposium on Foundations of Software Engineering
(FSE), pages 1-11. ACM, 2006.

[19] A. J. Ko, R. DeLine, and G. Venolia. Information Needs in
Collocated Software Development Teams. In Proceedings of
the 29th International Conference on Software Engineering
(ICSE), pages 344-353. ACM/IEEE, 2007.

[20] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining Mental
Models: A Study of Developer Work Habits. In Proceedings
of the 28th International Conference on Software Engineering
(ICSE), pages 492-501. ACM/IEEE, 2006.

[21] J. Lincke and R. Hirschfeld. Scoping Changes in
Self-supporting Development Environments Using Context-
oriented Programming. In Proceedings of the 4th Interna-
tional Workshop on Context-oriented Programming (COP).
ACM, 2012.

[22] J. Lincke and R. Hirschfeld. User-evolvable Tools in the Web.
In Proceedings of the 9th International Symposium on Open
Collaboration (OpenSym). ACM, 2013.

[23] J. Lincke, R. Krahn, D. Ingalls, and R. Hirschfeld. Lively
Fabrik A Web-based End-user Programming Environment. In
Proceedings of the 7th International Conference on Creat-
ing, Connecting and Collaborating through Computing (CS5),
pages 11-19. IEEE, 2009.

(13]

(14]

198

[24] J. H. Maloney and R. B. Smith. Directness and Liveness in
the Morphic User Interface Construction Environment. In
Proceedings of the 8th Symposium on User Interface and
Software Technology (UIST), pages 21-28. ACM, 1995.

[25] K. Mens, B. Poll, and S. Gonzélez. Using Intentional Source-
Code Views to Aid Software Maintenance. In Proceedings of
the 19th International Conference on Software Maintenance
(ICSM), pages 169-178. IEEE, 2003.

[26] P. Naur. Programming as Theory Building. Elsevier Micro-
processing and Microprogramming, 15(5):253-261, 1985.

[27] Y. Ohshima, A. Lunzer, B. Freudenberg, and T. Kaehler.
KScript and KSWorld: A Time-aware and Mostly Declarative
Language and Interactive GUI Framework. In Proceedings
of the International Symposium on New Ideas in Program-
ming and Reflections on Software (Onward!), pages 117-134.
ACM, 2013.

[28] E. Olivero, M. Lanza, M. D’ Ambros, and R. Robbes. Enabling
Program Comprehension through a Visual Object-focused
Development Environment. In Proceedings of the Sympo-
sium on Visual Languages and Human-centric Computing
(VL/HCC), pages 127-134. IEEE, 2011.

[29] J. K. Ousterhout. Scripting: Higher level programming for the
21st century. IEEE Computer, 31(3):23-30, 1998.

[30] M. Perscheid, B. Steinert, R. Hirschfeld, F. Geller, and
M. Haupt. Immediacy through Interactivity: Online Analysis
of Run-time Behavior. In Proceedings of the 17th Working
Conference on Reverse Engineering (WCRE), pages 77-86.
IEEE, 2010.

[31] E. S. Raymond. The Art of UNIX Programming. Addison-
Wesley Professional Computing Series, 2004.

[32] J. Sillito, G. C. Murphy, and K. De Volder. Asking and
Answering Questions During a Programming Change Task.
IEEE Transactions on Software Engineering, 34(4):434-451,
July 2008.

[33] D. Spinellis. UNIX Tools as Visual Programming Compo-
nents in a GUI-builder Environment. Wiley Software: Practice
and Experience, 32(1):57-71, 2002.

[34] B. Steinert, M. Taeumel, J. Lincke, T. Pape, and R. Hirschfeld.
CodeTalk: Conversations About Code. In Proceedings of the
8th International Conference on Creating, Connecting and
Collaborating through Computing (C5), pages 11-18. IEEE,
2010.

[35] M. Taeumel, T. Felgentreff, and R. Hirschfeld. Apply-
ing Data-driven Tool Development to Context-oriented Lan-
guages. In Proceedings of 6th International Workshop on
Context-oriented Programming (COP). ACM, 2014.

[36] C. Treude and M. Storey. Work Item Tagging: Communicat-
ing Concerns in Collaborative Software Development. /EEE
Transactions on Software Engineering, 38(1):19-34, 2012.

[37] D. Ungar and R. B. Smith. Self. In Proceedings of the 3rd
Conference on History of Programming Languages (HOPL),
pages 9/1-9/50. ACM SIGPLAN, 2007.

[38] M. Vaziri, O. Tardieu, R. Rabbah, P. Suter, and M. Hirzel.
Stream Processing with a Spreadsheet. In Proceedings of

the European Conference on Object-oriented Programming
(ECOOP), pages 360-384. Springer, 2014.

A. The Introductory Example

We gave an introductory example for a script using Unix
filters to extract URLs from a Wikipedia page. This is how
a comparable script can look in our framework using only
transformations but no rules to generate an intermediate
model for widgets:

[:token | (WebClient httpGet:
(’http://en.wikipedia.org/wiki/{1}’> format: {token}))
content lines].
:line | ’href="/wiki/[""]*"’ asRegex matchesIn: line].
:tokens | tokens asSet asOrderedCollection sorted].
:url | (url copyReplaceTokens: ’href="’
with: ’http://en.wikipedia.org’)
allButLast].

/e

Notice the more data-driven appearance of adjacent
Smalltalk blocks compared to a functional implementation
that uses the collection interface (subsection 2.2). These four
transformations, respectively scripts, are used in[Figure T|ex-
tracting text properties after each transformation like this:

[:object | #text -> object asString].

Obviously, it is the programmers’ choice to which extent
they employ this mechanism. A similar script with clearer
dataflow semantics can look like this:

[:token | ’http://en.wikipedia.org/wiki/’, token].
[:url | WebClient httpGet: url].

[:response | response content lines].

[:line | ’href="/wiki/[""]*"’ asRegex matchesIn: line].
[:tokens | tokens asSet asOrderedCollection sorted].
[:url | url copyReplaceTokens: ’href="’

with: ’http://en.wikipedia.org’].
[:url | url allButLast].

Given a file handle, one can also use a script to write the
results into a file:

[:url :file | file nextPutAll: url, String cr].

B. The Code Browser

[Figure 4] and [Figure 5| shows parts of a code browser that
lists packages, classes, and methods. There are three scripts
for that; the first transforms the package organizer into a list
of packages:

—

:packageOrganizer | packageOrganizer packages].
:package | #text -> package name].

—

The second script transforms package into classes:

—

:package | package classes].
:class | #text -> class name].

—

The third one transform classes into methods:

—

:class | class theNonMetaClass methodDict values,
class theMetaClass methodDict values].

:method | #text -> method selector].

—

199

C. The Commit Tool

The commit tool supports browsing changed packages with
diffs, browsing repositories for their versions, and storing
source code into a repository. Here, we list all source code
that is necessary to describe such a tool as illustrated in

For the packages, we use a list-based widget. Given a
token, list all matching packages:
[:token | PackageOrganizer default packages

select: [:package |

package name
includesSubstring: token asString

caseSensitive: falsel].
[:package | #text -> package name].

For the repositories, we use a list-based widget, too.
Given a package, list all registered repositories in the cor-
responding working copy:

[:package | package workingCopy repositoryGroup

repositories].
[:repository | #text -> repository description].

For invoking the commit, we use a button. Given the
modified package, its repository, and a commit message,
configure the button so that a new version is stored on a click:
[:package :repository :message |

package workingCopy in: [:wc | {

#text -> ’Commit’.
#clicked -> [[repository storeVersion: (wc

newVersionWithName: wc uniqueVersionName
message: message)]] }]]

For the list of versions, we use a list-based widget. Given
the repository and a particular package, list all versions:
[:repository :package | repository

versionNamesForPackageNamed: package name].
[:version | #text -> version name]

For the list of changes, we use a list-based widget. Given
the package and its repository, ask the working copy for
change operations:

[:package :repository | (package workingCopy
changesRelativeToRepository: repository)

operations] .
[:operation | #text -> operation summary].

Finally for the source code diff, we use a rich text box.
Given the patch operation, show its code as formatted dift:

[:operation | #text -> operation sourceText].

D. Tools for Program Comprehension

In the exemplary case in[section 4} we presented a program-
mer that wrote several scripts for exploring source code and

run-time state as well as for talking to a colleague. The fol-
lowing test case failed and made the programmer struggle:
testTopLeftField

" Tests, whether the playfield’s topLeftField is correctly updated
when it has been replaced.”

| pipe |

pipe := PlBendPipe new.

(playField fieldAtPoint: 0@0) replaceBy: pipe.
self assert: (playField topLeftField = pipe).

While stepping through the code, the programmer discov-
ered a check in the called replaceBy: method:

replaceBy: aPipe

"Replaces itself by an aPipe and links the new item with its

new neighbours as well as the new neighbours with the new

item."”

self canBeReplaced ifFalse:

aPipe

leftNeighbour: self leftNeighbour;
rightNeighbour: self rightNeighbour;
topNeighbour: self topNeighbour;
bottomNeighbour: self bottomNeighbour.

self changed: #score with: aPipe scoreEmpty.

[~ self].

For the call stack in the debugger, we use a list-based wid-
get. Given the suspended process, extract all stack frames:

[:process | process suspendedContext stack].
[:frame | #text -> frame printString].

For the source code, we use a text box. Given a selected
stack frame, show the source code and highlight the program
counter:

[:frame | | range |
range := frame debuggerMap
rangeForPC: frame pc "program counter (PC)"
contextIsActiveContext: false. "for PC interpretation”
{ #text -> (frame method getSource makeSelectorBold
addAttribute: (TextColor color: Color blue)
from: range first
to: range last) }].

For the process control, we use a button bar. Given the
suspended process, map buttons to some process actions:

[:process | {
#text -> ’Rewind’.
#clicked -> [[process suspendedContext in:
(process popTo: old sender) == old
ifTrue: [process restartTop;
stepToSendOrReturnl] 11 }1.

[:014d |

[:process | {
#text -> ’StepyInto’.
#clicked -> [[process step: process suspendedContext.
process stepToSendOrReturn. 11 }1.
[:process | {
#text -> ’Step Over’.
#clicked -> [[process suspendedContext in:
process completeStep: old.
process suspendedContext == old
ifTrue: [process stepToSendOrReturn]l] 1] }].

[:01d |

For arguments in the arguments browser, we used a list-
based widget. Given the selected stack frame, parse the
source code to show the argument names:

[:frame | RBParser parseMethod: frame method getSource].

[:node | node arguments].
[:node | #text -> node token value].

For the actual instances, we used also a list-based widget
that arranges multiple items in each line. Given the selected

200

stack frame and the selected argument node, collect run-time
data and show results:

[:node :frame | (TraceManager default
argumentObjectsForReference: frame method
methodReference)

select: [:assoc | assoc key = node token valuel].

[:assoc | assoc value].

[:points | points asSet asOrderedCollection sorted].

[:point | #text -> point asString].

The programmer’s chat tool requires an established Jab-
ber connection. It filters the roaster by the authors of the se-
lected method like this:

[:connection :frame |
| authors map |

map := Dictionary newFrom: {
’ba’ -> ’Bob’
’dt’ -> ’Dave’
‘mj’ => ’Max’ }.
authors := frame method versions
collect: [:version | map at: version author].

connection buddies select: [:buddy |
authors includes: buddy nickName]].

:buddy | {

#text -> buddy nickName.

#icon -> (buddy status = ’online’
ifTrue: [UiIcons bulletGreen]
ifFalse: [UiIcons bulletWhite]) 1}].

—

For the chat history, we use a text box. The script is re-
evaluated on incoming messages Given the selected buddy,
show the previous messages:

[:buddy | { buddy.
LocalChatHistory messagesFor: buddy 1}].
[:buddy :message |
#text -> (’<font_color="#AAAAAA">{1} - <font,
color="#0000FF">{2}
{3}’
format: {
buddy nickName.
(message at: #method) ifNil: [’’] ifNotNil:
m methodClass name, ’ \>\>’, m selector].
message at: #mesage}) asHtmlText].

[:m |

For the send button, we use a button bar like in the
debugger. Given the buddy, the stack frame, and the current
message, configure the button:

[:buddy :frame :message |
#text -> ’Send |lMessage’.
#clicked —> [[
buddy send: (Dictionary newFrom: {
#message -> message.
#method -> frame method)]] 1J.

	Introduction
	From Behavior-driven to Data-driven
	Live Programming Systems
	Simplifying Behavioral Descriptions
	A Data-driven Perspective on Graphical Tools

	The Mechanism
	Configuration: Exploring Data and Views
	Combination: Establishing Dataflow
	Abstraction: Graphical Tools as ``Gray Boxes''
	Data-driven Tool Development

	Example Case: Program Comprehension
	Setting
	The Conventional Programmer
	The Eager Programmer
	The Social Programmer

	Discussion
	Revising the Past's Efforts
	To Script, or Not To Script
	The Benefits of a Live Programming System

	Related Work
	Data-driven Application Development
	Organization of Coherent Software Artifacts
	Source Code Query Languages
	Direct Manipulation Programming Environments

	Conclusion
	The Introductory Example
	The Code Browser
	The Commit Tool
	Tools for Program Comprehension

