
Orca: A Single-language Web Framework
for Collaborative Development

Lauritz Thamsen∗, Anton Gulenko∗,
Michael Perscheid†, Robert Krahn†, and Robert Hirschfeld†

Software Architecture Group
Hasso Plattner Institute

University of Potsdam, Germany
∗{firstname.lastname}@student.hpi.uni-potsdam.de

†{firstname.lastname}@hpi.uni-potsdam.de

David A. Thomas
Bedarra Research Labs

Ontario, Canada

dave@bedarra.com

Abstract—
In the last few years, the Web has been established as a

platform for interactive applications. However, creating Web
applications involves numerous challenges since the Web has been
created to serve static content. In particular, the separation of
the client- and the server-side, being only connected through the
unidirectional Hypertext Transfer Protocol, forces developers to
apply two programming languages including different libraries,
conventions, and tools. Developers create expert knowledge by
specializing on a few of all involved technologies. Consequently,
the diverse knowledge of team members makes collaboration in
Web development laboriously.

We present the Orca framework that allows developers to
work collaboratively on client-server applications in a single
object-oriented programming language. Based on the Smalltalk
programming language, full access to existing libraries, and a
bidirectional messaging abstraction, Orca provides a consistent
environment that supports common idioms and patterns in client-
and server-side code. It reduces expert knowledge and the num-
ber of development tools and, thus, facilitates the collaboration
of Web developers.

Keywords-Collaborative Web Development, Orca, Smalltalk,
JavaScript

I. INTRODUCTION

From its beginnings, the Web has evolved from a system

for serving static documents to a platform for deploying

interactive applications. To support this evolution, numerous

technologies have been developed to leverage the original ar-

chitecture of the Web. As of today, servers provide services [1],

clients run self-supporting systems and display interactive user

interfaces [2], and polling idioms allow servers to send data

spontaneously to clients [3].

However, the Web’s distinction between the client- and the

server-side renders Web development more complicated than

necessary. For example, the communication between the two

parts is often uniquely implemented for a specific application,

since there is no broadly established way to expose Web appli-

cation interfaces without exposing implementation details [4].

Further, developers combine numerous Web technologies such

as scripting languages, frameworks, database mappers, com-

munication protocols, and graphical markup languages. De-

velopers need to remember syntactic and semantic differences

as well as the functionality and interfaces of two standard

libraries. These development practices force developers to

mix functional, procedural, and declarative development styles

in their application sources, which considerably reduces the

readability of their implementations [5].
The duality of programming languages and the multitude of

applied technologies unavoidably lead to distinct and heteroge-

nous code bases, vocabularies, development practices, and,

thereby, expert knowledge. For these reasons, development

teams become inflexible and the collaboration while devel-

oping a single Web application becomes difficult.
We present the Orca framework that allows developers to

work collaboratively on all aspects of Web applications in a

single object-oriented language. Orca reduces the dominant

difference between client and server by letting developers

describe client parts, server functionality, and client-server

communication in the language and development environment

of the server. Our Smalltalk/Squeak [6] implementation au-

tomatically translates client-side parts of the Web application

into readable JavaScript code. For these translated parts, it

provides a client-side runtime, access to JavaScript libraries

within Smalltalk, and transparent message passing between

client and server. Thus, developers can express complete

applications in a single programming language and teams are

able to share not only a homogenous code base and tools, but

also knowledge in a consistent vocabulary.
The contributions of this paper are as follows:

• A Web framework that allows to program both the

client- and the server-side in a single object-oriented

programming language and development environment

(Section III, IV).

• A Smalltalk-to-JavaScript translator that automatically

generates readable code and a client-side environment

that permits access to language features and existing

libraries of both languages (Section V-A).

• A bidirectional messaging abstraction that enables objects

on clients and the server to communicate transparently

(Section V-B).

The remainder of this paper is organized as follows. Sec-

tion II illustrates the challenges of Web development in teams.

2012 10th International Conference on Creating, Connecting and Collaborating through Computing

978-0-7695-4672-8/12 $26.00 © 2012 IEEE

DOI 10.1109/C5.2012.9

45

Section III introduces our Orca framework, while Section IV

shows an example application. Section V describes Orca’s

implementation. Section VI evaluates our approach based on

the example application. Section VII discusses related work,

while Section VIII concludes this paper.

II. CHALLENGES IN WEB DEVELOPMENT

We describe the development of a chat application by a team

of programmers to demonstrate why Web development today

is more challenging than it should be. The chat application

allows users to type in their names and to send notes to other

participants. These interactions trigger dynamic updates of the

browser’s user interface.

The development team confronted with the task of imple-

menting this application has to apply various technologies.

They express the user interface using HTML, CSS, and

JavaScript and implement the server functionality of chat

message distribution in an additional language.

Although this server-side language can be chosen freely, the

team does not use JavaScript for this task, because JavaScript

has some problematic features [7]. For example, there are

implicit global variable definitions, equality relationships that

are not transitive, automatic type conversion for values that

are neither equal nor identical, and four distinct function

invocation patterns. If developers write JavaScript by hand,

they can accidentally inject security threats [8]. Nevertheless,

the team has to describe the client-side in JavaScript to allow

the chat application to run in any browser. Further, the team

directly applies the unidirectional Hypertext Transfer Protocol

(HTTP) to transfer notes to the server.

Spreading implementations across these technologies ren-

ders the development of the example complicated and la-

borious. Developing Web applications using two different

programming languages has several drawbacks as there are

differences in syntax, semantics, object models, means of mod-

ularization, and standard libraries. The developers have to deal

with this duality of languages either individually or by splitting

up into client- and server-side teams. When they decide not

to split up according to technologies, each developer has to

constantly switch between languages. Splitting up, however,

inevitably leads to expert knowledge as each programmer

works with a subset of all involved technologies—the team

becomes more dependent on individual developers.

Client- and server-side developers have to negotiate inter-

faces and data flows for most features. For example, adding

author names to chat notes requires changes to the interface

on the client-side, changes to the data model on the server-

side and adaptions to the communication between both. Even

with object interfaces, serialization formats, and server routes

in place, both need to agree on the structure of transmitted

content. Further, the developers mirror parts of the implemen-

tation across languages as the idea of notes is necessary both

on the client and the server. This duplication violates principles

of good software design [5].

The described development process is characteristic for

Web development in general. First, the chosen application

demonstrates all aspects of a typical Web application as it

is interactive and collaborative [9]. Second, although teams

apply popular Web frameworks as Ruby on Rails [10] and

Django [11] that claim to alleviate Web development, these

frameworks do not reduce the number of necessary tech-

nologies. Client-side developers are still using JavaScript,

while the server-side language is called from within HTML

templates, forcing client and server developers to mix up their

implementations.

Even though development of Web applications is special in

that it is tied to the Web’s technology stack with JavaScript,

HTML, and CSS on the client-side and HTTP for client-

server communication, these technologies can be abstracted.

A unified and object-oriented solution for Web development

can render the direct application of the unidirectional commu-

nication protocol, graphical markups, and two programming

languages unnecessary while providing full access to libraries

on client and server.

III. THE ORCA FRAMEWORK

The Orca Web framework strives to reduce the difficulties of

conventional Web development. It allows the development of

all aspects of Web applications in a single language to increase

the consistency of implementations. Although using multiple

languages can alleviate programming of applications if specific

languages are chosen for their eligibility as, for example,

Domain Specific Languages (DSLs), the languages of the Web

are either general purpose as JavaScript or no longer applied

as originally intended as HTML and CSS [12]. Therefore,

Orca solely relies on the Squeak/Smalltalk language. Using

Smalltalk avoids the aforementiond ambigious features of

JavaScript.

Development in a single language should not restrict devel-

opers in expressing client-side programs. This is important

since executing logic on client-side can increase interface

responsiveness and reduce network reliance [13]. Therefore,

Orca does not apply markup generation or wrappers for

JavaScript libraries, but allows the expression of arbitrary

client-side code in Smalltalk.

Figure 1. The main components of Orca as single-language Web development
solution.

Four main components, as depicted in Figure 1, constitute

the Orca Web framework and enable its single-language Web

46

development approach.

1) A compiler or interpreter that translates the client-side

part to readable JavaScript code. This translator reflects

semantic differences like variable scope, default values

for initialization and returns, and provides access to

literals and language features available in JavaScript.

The generated JavaScript code maintains the chosen lan-

guage’s semantics as developers do not write JavaScript.

A server-side translator allows caching of generated code

for numerous clients.

2) A JavaScript runtime environment that emulates the

language features that have no direct equivalent in

JavaScript. This runtime provides the object model,

access to available objects, and emulations of primitives

or operators.

3) Mechanisms to express JavaScript features that have

no equivalent in the server-side language. For these

mechanisms, the compiler has to implement rules, while

the client-side runtime implements semantics.

4) Abstractions for the communication between remote ap-

plication parts. For a complete single-language program-

ming experience, it enables bidirectional communication

and remote invocations.

In Orca, developers apply the same syntax, semantics,

object model, and standard library to express both client

and server, while utilizing existing JavaScript functionality.

Instead of writing HTML and CSS, they apply JavaScript

widget libraries. Rather than applying HTTP directly to request

data from server routes, remote invocations are similar to the

language’s invocation mechanisms, including addressing the

language’s entities instead of URLs.

The Orca framework further incorporates deployment fa-

cilities as, for example, a Web server to allow developers to

concentrate on programming instead on configuring a server’s

dispatch, request handling, and caching.

IV. ORCA BY EXAMPLE

We present an example application to give an intuition of

developing Web applications with Orca.

A simple chat application, as shown in Figure 2, allows

receiving and sending chat notes. The server-side of the chat’s

implementation distributes such notes among participants,

while the browser displays them to users. Instead of describing

the complete implementation, we will focus on parts of the

interface and the client-server communication.

First, we create a new Orca application, set the application’s

name, define necessary JavaScript libraries, and declare which

classes are required on the client-side in addition to certain

classes of Smalltalk’s standard library and the application class

itself (Listing 1). When an application class has been created

and configured, it is immediately available on the application

server.

The ChatWindow is one of three classes that constitute the

implementation of this chat example as shown in Figure 3.

Instances of the ChatWindow class represent an arbitrary

number of clients and display notes, while a single ChatHub

Figure 2. The chat participants share notes through a central server.

ChatWindow class>>#requiredClasses

↑ { ChatNote. }

Listing 1. The client-side requires the classes for chat windows and notes.

instance distributes notes among all chat participants. Both

the ChatWindow instances and the ChatHub singleton use

ChatNote objects. That is, the model for notes is necessary

on both the client- and the server-side.

We use the application’s initialization to setup the desired

user interface including the chat’s button (Listing 2).

The button gets a label and a callback. Orca comes with

predefined user interface elements, although arbitrary HTML

tags can be used. Orca’s class for interface elements is called

OrcaWidget and its initialization shows how to create an

arbitrary HTML element (Listing 3).

The Js class provides access to global JavaScript objects

on the client-side and in this case to the Document object.

Figure 3. The chat’s implementation includes objects for the client’s window,
the server’s message distribution and for chat notes.

ChatWindow>>#initializeButton

self sendButton:
(OrcaSubmitButton new

text: ’ Submit ’;
onClickDo: [self sendChatNote])

Listing 2. The initialization of the chat window creates a button.

47

OrcaWidget>>#initialize

self
node: (Js Document createElement

value: self class htmlTag);
children: OrderedCollection new.

Listing 3. The Orca widget initialization creates document nodes.

ChatWindow>>#sendChatNote
| chatNote|
chatNote := ChatNote

text: messageInput text
author: nameInput text.

self remoteHub spread: chatNote.

Listing 4. The client sends a chat note to the server.

This object provides the createElement() function that

creates a new HTML element with a supplied HTML tag.

Since an object’s function can be either retrieved or evaluated

in JavaScript, we use the message value: to explicitly

evaluate retrieved functions. We have chosen this message

selector since JavaScript functions and Smalltalk blocks are

conceptually similar and value: is used to evaluate Smalltalk

blocks.

Revisiting our button’s initialization, the onClickDo:
message receives a Smalltalk block as callback and sets it

as an element’s property. The callback is executed on every

click on the button and invokes the sendChatNote method

(Listing 4).

To understand how the note is transferred to the server and

to all clients, we need to know what the remoteHub object

is. On initialization, the client-side of the chat registers with

the server-side (Listing 5). The asRemote message creates a

proxy object for the ChatHub class of the server-side. This

client-side proxy object forwards the uniqueInstance
message to the class on the server-side. The invoked method

returns a proxy for the singleton to the client. The method

further sends the client’s chat window to the chat hub object.

This way, the hub receives a proxy for this client-side object

and can send messages to it as in the spread: method (List-

ing 6) which executes whenever the button’s sendChatNote
is clicked.

Since clients may be no longer available, the server might

receive an exception on the attempt to send a note to a client.

In this example, we use this exception to inform all participants

that the unreachable client left the chat.

When a note reaches a client, the client creates a new

ChatWindow>>#registerWithHub

self remoteHub:
ChatHub asRemote uniqueInstance.

self remoteHub registerWindow: self.

Listing 5. The client-side initialization connects client and server.

ChatHub>>#spread: aChatNote
self registeredChatWindows do:

[:each |
[each

performForked:
#displayChatNote:

with: aChatNote]
on: ClientTimedOut
do: [:ex | self

informParticipantsAbout:
ex timedOutClient]].

Listing 6. The server spreads chat notes among clients.

ChatWindow>>displayChatNote: aChatNote

| noteWidget |
noteWidget := ChatNote for: aChatNote.
self add: noteWidget.

Listing 7. The chat window displays received notes.

element for the message and adds it to the display (Listing 7).

The presented implementation of a chat application with

Orca demonstrates our single-language Web development

approach. The complete application—including the client-

side and client-server communication—is expressed solely in

Smalltalk. This is possible through a Smalltalk-to-JavaScript

translator, a custom client-side environment, and a bidirec-

tional remote messaging abstraction.

V. IMPLEMENTATION

Orca is a single-language Web framework implemented in

Smalltalk/Squeak.

This section shows how Orca’s compiler translates Smalltalk

code to JavaScript, how its custom client-side environment ex-

ecutes the translated code, and how it makes all JavaScript fea-

tures available in Smalltalk. The section further describes how

Orca enables client-server communication through Smalltalk

messages.

A. Expressing Client-side Functionality in Smalltalk

1) Translating Smalltalk to JavaScript: Orca’s Smalltalk-

to-JavaScript translator generates the client-side of an Orca

application. Besides syntactic translation, it takes semantic

differences between both languages into account.

Variable declarations are translated directly, but each vari-

able is initialized to the default value nil instead of

undefined. If there is no explicit return from a method, a

return statement is added that returns the receiver, consistent

with Smalltalk semantics.

Orca’s compiler translates message sends to function calls.

A mapping from Smalltalk message selectors to JavaScript

function names avoids collisions of Smalltalk messages and

instance variables because there is no different scope for

functions and properties and no overloading in JavaScript.

48

The compiler translates Smalltalk literals to calls to global

functions with the primitive JavaScript equivalent as argu-

ment. These functions produce Smalltalk-typed objects for

the JavaScript values without adapting objects of JavaScript’s

standard library.

The compiler also takes care of Smalltalk cascades. As there

is no similar structure in JavaScript, it compiles them into

equivalent statements.

JavaScript code translated with Orca does not apply

JavaScript control structures directly. Each message send is

translated to a function call; including Smalltalk messages as

ifTrue:ifFalse:. The compiler translates necessary parts

of Smalltalk’s standard library to allow calling these func-

tions. This way, Orca allows translation of arbitrary Smalltalk

without any type analysis. It translates the code directly and

produces a JavaScript version with the exact call structure.

The compiler applies JavaScript code conventions and pre-

serves comments to alleviate debugging the client-side with

the browser’s tools.

In the future, we would like to use type analysis to enable

the compiler to use JavaScript control structures for perfor-

mance and readability reasons.

2) Running Smalltalk in JavaScript: The translation of

our compiler depends on features of Smalltalk that are not

present in JavaScript. Therefore, Orca provides a Smalltalk-

like environment for the JavaScript runtime.

Although Smalltalk and JavaScript are both dynamically

typed and object-oriented programming languages, they are

based on two distinct object models. JavaScript objects are

prototypes, whereas Smalltalk objects are instances of classes.

Orca applies JavaScript’s prototypical inheritance to emulate

Smalltalk’s class system on the client.

After the initialization of the Smalltalk standard library,

the runtime creates objects that are part of every Smalltalk

runtime. For example, it creates globally accessible singletons

like nil, true, false.

Besides the object model and literally accessible objects,

some programming concepts of Smalltalk have to be emulated

in JavaScript. For example Smalltalk’s doesNotUnderstand
mechanism or non-local method returns of blocks are required

to maintain the semantics of translated code. The implemen-

tation of Smalltalk’s doesNotUnderstand concept relies on the

compiler’s collection of used message names. These message

names are collected to create a new root class of the class

hierarchy that provides default implementations for all actually

sent messages. For Smalltalk’s non-local method returns, Orca

uses JavaScript exceptions to return the block’s home context.

Orca emulates required primitives of Squeak’s virtual ma-

chines that have no software implementation.

3) Expressing JavaScript in Smalltalk: For complete single-

language development, developers need to be able to express

any client-side programs in Smalltalk.

We achieve that by mapping JavaScript operators and values

to equivalent Smalltalk messages and objects. Further, func-

tions are mapped to the native interface of Smalltalk blocks.

Other aspects of the JavaScript language require an explicit

representation in the Smalltalk environment. For example,

Orca allows assignment and testing of object slots by using

explicit JavaScript-only objects. Messages that conform to

Smalltalk’s conventions for accessing instance variables are

used as getters and setters of object slots. Other explicitly im-

plemented JavaScript features include creating plain JavaScript

objects through the new operator or literals.

These mechanisms enable developers to take advantage

of existing JavaScript functionality instead of writing and

maintaining wrappers for libraries. For example, the browser

interface, which is used to build and manipulate the structure

of the application’s Web interface, is accessible.

Objects on the client-side have two representations to

achieve interoperability with library code. There is one rep-

resentation for Orca’s Smalltalk environment in JavaScript

and one for the original environment. Upon entering Orca’s

Smalltalk environment within JavaScript, JavaScript objects

are automatically boxed to resemble Smalltalk equivalents of

their JavaScript equivalents.

B. Expressing Client-server Communication in Smalltalk

With Orca, objects on client and server interact through

messages. Orca implements transparent message passing as

in Distributed Smalltalk [14] to allow code to invoke local

and remote methods.

When messages address remote objects, Orca forwards them

transparently. The framework serializes objects and creates re-

quests. However, remote messages still require local receivers.

Orca provides proxies for objects that are not part of the

local address space. Client-side proxies hold an identifier for

an actual object of the server, whereas server-side proxies

additionally contain a reference to a certain client. Remote
Object Maps resolve these identifiers on client and server.

Remote messages to such proxy objects transfer arguments

and return values. Orca’s remote messaging transfers numbers,

strings, characters, booleans, and the pseudo-variable nil by

value. The default option for instances of other classes is

to transfer a reference instead of an actual object. That is,

a proxy is generated transparently on such messages and is

supplied as parameter. Orca further lets developers specify

that objects should be passed by values despite being none

of the mentioned types. Instances of classes that return true

on copyOnSend messages are passed by value and will,

therefore, be locally available in the receiver’s environment.

Since remote messages are orders of magnitude more expen-

sive than local messages, developers might apply this copy

mechanism as optimization. When an object is passed by

value, the object’s class has to be available in the target

environment.

Like local sends, remote sends are synchronous by de-

fault. However, Orca also provides message sends that do

not wait for remote answers, but directly receive Smalltalk’s

nil value. These one-way sends are available through

the performForked:withArgs: message that expects a

message selector and arguments.

49

Further, clients or the server might no longer be available,

but still be referenced. In this case, the sender receives an

exception after a timeout.

Orca’s message passing mechanism is built on top of a

bidirectional abstraction layer that applies long polling. In

addition to allowing server-side sends at anytime our ab-

straction layer handles allocation of answers. This way, Orca

alleviates the implementation of control flows that request

further information on requests without responding to the first

request immediately.

In the future, we will address security concerns as clients

can currently send any messages to all global Smalltalk

objects.

VI. EVALUATION

This section evaluates whether Orca alleviates Web develop-

ment by discussing its impact on the development process of

the chat application. Further, we explain certain compiler op-

timizations that reduce the execution time of Orca’s generated

client-side code significantly.

A. Development of Orca Applications

With Orca, teams design and implement the application in a

single development and runtime environment. The developers

use a more consistent tool chain, including a single code

browser, search facilities, test runner, and refactoring tools.

A single source code management system contains the team’s

code. There is considerably less distinction of client and server

programming—both apply the same language, standard library,

and the same conventions. Section II discusses that this is

not the case with traditional Web development. The team has

to cope with multiple sources and differences between both

applied programming languages.

Development solely in Smalltalk increases readability and

understandability of the system as the listings in Section IV il-

lustrate. The whole team is able and encouraged to understand

all parts of the implementation.

Orca’s Smalltalk-to-JavaScript compiler translates arbitrary

Smalltalk code. It produces valid code that relies on our

emulation of the Smalltalk environment to execute on the

client. Our research team and five experienced JavaScript and

Smalltalk developers evaluated the readability of the resulting

JavaScript code. It is formatted according to JavaScript coding

conventions, includes the original comments, and keeps the

structure of the Smalltalk code. The generated code can be

debugged in its actual JavaScript runtime environment and

insights can be easily applied to the Smalltalk source code.

Orca reduces the amount of source code and prevents du-

plications between client and server. The chat implementation

showed that developers do not need to write or call any

serialization routines and that no code has to be mirrored

across languages. They do not create HTTP requests on the

client-side, dispatch them on the server-side, and specify

responses. Developers express the communication on the level

of abstraction of Smalltalk. That is, already existing object

interfaces are used instead of ad-hoc interfaces defined by

name-value pairs, serialization formats and server routes.

For larger and more complex applications, we think that

development might be impeded by the implicit nature of

proxy-based message forwarding. Orca, therefore, exposes its

bidirectional communication layer to application developers

and comes with simpler messaging abstractions as, for

example, remote block evaluation.

To summarize, the development of Web applications with

Orca avoids many of the problems of traditional Web devel-

opment. The development team can focus on writing homoge-

nous application code in a single development environment.

There is no context switching between technologies and, thus,

likely less expert knowledge.

B. Execution of Orca Applications

Server-side logic, client-server communication, and client-

side functionality constitute Orca applications. The server-side

of Orca applications executes as fast as regular Smalltalk,

while remote one-way sends can transfer parameters as value

and, thereby, in an equal number of HTTP requests as used

manually. However, the generated client-side of Orca applica-

tions is expected to be slower than manual implementations.

To measure the performance of the generated code, we

implemented the ackermann(3, 4) [15] function with

Orca and compared its execution time to that of native

JavaScript. We chose this recursive algorithm, because its

execution includes arithmetical operations, conditional control

structures, and numerous method calls. The experiment was

conducted with an Intel Core i7 processor, 8 GB of main

memory, the operating system Windows 7 and the Google

Chrome browser version 15.0.874.121. We used JavaScript’s

Date().getTime() function and averaged 50 runs.

The plain JavaScript version took 0.4 milliseconds, while

the Orca version was finished within 207 milliseconds.

Orca’s generated version runs orders of magnitude slower

than the JavaScript implementation. The main performance

loss results from the compiler’s preservation of the character-

istics of the original Smalltalk code. That is, message sends

express arithmetic operations and control flow. Further, the im-

plementation of our custom environment wraps each message

send into two functions. For these reasons, the addition of two

numbers, for example, results in a callstack of at least eight

invokations in addition to the actual + statement, while an

ifTrue: statement requires nine calls and, further, creates a

short-living BlockContext object.

A number of optimizations can improve Orca’s compiler.

The first improvement should be to remove one of the func-

tions wrapped around each method call. Experiments showed

a performance gain of 15%.

Further, performance can be increased through using

JavaScript operators for arithmetic operations and control flow.

We could apply similar techniques as used by optimizing

compilers of polymorphic code [16]. The compiler would

detect variables that are likely of a certain type through

50

static analysis of message sends. For such variables, it could

generate type checks as well as JavaScript control structure

and operators. On successful type checks, the JavaScript

engine would execute operators directly, while the original

polymorphic implementation would be executed otherwise.

The overhead created by the type checks is considerably low

compared to the performance gain we encountered.

We modified the generated code for the ackermann(3,
4) function to measure the proposed optimizations. All opti-

mizations resulted in code that ran only five times slower than

our manual JavaScript implementation of the example.

An issue with generating optimized code is reduced read-

ability. Such compilation should, therefore, only be feasible

for production versions that developers will less likely debug.

Another problem might pose the increased code size, but as

Orca transports code compressed, loading a web page should

still be sufficiently fast.

In conclusion, we demonstrated that the measured low

performance is not inherent to our approach. In the future, we

will reduce the performance penalties through the proposed

optimizations and will experiment with different type analysis

tools such as TypeHarvester [17].

VII. RELATED WORK

1) Server-centric Web Frameworks: Numerous Web frame-

works support the development of database-driven, server-

centric Web applications [18]. Such frameworks as, for ex-

ample, Ruby on Rails, Django, and Seaside [19] run on the

server-side and generate HTML for the browser. Ruby on Rails

and Django both rely on HTML templates and inline calls to

server-side functionality. That is, such template-based frame-

works continue to build user interfaces with HTML pages and

mix different programming paradigms and languages in their

source files, which reduces readability and maintainability. In

contrast, Seaside provides an embedded DSL for HTML com-

ponents and, therefore, can be considered as a single-language

approach to server-centric Web application development. All

three examples have in common that developers express client-

side logic either directly in JavaScript or through JavaScript

wrappers. In contrast, Orca allows expression of client-side

functionality in the server-side language including facilitating

JavaScript widget libraries.

2) Single-language Web Frameworks: GWT is a framework

for single-language Web development in Java based on a Java-

to-JavaScript compiler, emulation of the Java Runtime, and a

widget library. Similar components resemble the Python-based

single-language Web framework Pyjamas [20]. Both generate

browser-specific client-side code and, thereby, relieve devel-

opers from ensuring interoperability across multiple browsers.

GWT and Pyjamas allow embedding JavaScript code directly

into the host language. Pyjamas code can inline JavaScript

code, while GWT’s JavaScript Native Interface (JSNI) only

allows implementation of whole JavaScript methods due to

Java’s static type system. However, JavaScript calls to existing

libraries still need to be wrapped for complete single-language

development. In contrast, Orca enables developers to express

JavaScript within Smalltalk. Both GWT and Pyjamas do not

incorporate bidirectional remote invocations as Orca does. In

comparison of all three approaches, GWT provides the most

complete tool support, while Orca provides the most integrated

single-language development approach.

3) HOP: The HOP programming language [21] is a

Scheme-dialect for developing multimedia Web applications.

It is based on two execution strata; one executes JavaScript on

the client-side, while the other executes Scheme on the server-

side. HOP provides a Scheme-to-JavaScript compiler [22],

syntax to escape inline between both strata, and bidirectional

communication through an event loop and remote function

invocation. In contrast to Orca’s translator, HOP’s compiler is

optimized for performance. We experienced HOP’s generated

JavaScript to be unreadable and, therefore, difficult to debug.

While HOP is build on the functional programming language

Scheme, Orca is based on Smalltalk’s object-oriented and

class-based development style.

4) Amber: Amber [23] is a self-contained Smalltalk imple-

mentation in JavaScript. It includes a Smalltalk-to-JavaScript

compiler, inline calls to JavaScript functionality, and syntax to

use JavaScript objects from within Smalltalk. For performance

reasons, Amber tries to use native JavaScript values where

possible, making it necessary to implement considerable parts

of the standard library in the compiler. In contrast to Orca,

Amber is a pure client-side environment. It can not directly

be used to implement Web applications that require server

functionality and client-server interactions.

5) Lively Kernel: The Lively Kernel [24] is an open and

self-supporting JavaScript environment that runs completely in

the browser. The Morphic user interface environment [25] and

the absence of separation between design-time and run-time al-

low rapid application development through direct composition

and immediate feedback, while its wiki-like deployment [26]

supports collaborative development efforts. In contrast to Orca,

Lively Kernel development happens in JavaScript. Further-

more, although the Lively Kernel is currently deployed with

server-side JavaScript through Node.js [27], the client-side and

the server-side are less integrated than their counterparts in

Orca.

6) Dart: The Dart Programming language [28] was de-

veloped as language for usage on both clients and servers.

Dart aims on better support for modularity and developer

collaboration by providing classes, interfaces, optional types,

libraries, and tools. To our most recent knowledge, a Dart

program is compiled to JavaScript and then executed in a

Web browser. As a general purpose language, Dart does not

include support for client-server communication. Compared to

Orca, the Dart language aims on unifying client- and server

programming, while Orca is a framework that further incorpo-

rates client-server communication, Web server infrastructure,

and integration with existing JavaScript libraries.

7) Native Client: Native Client [29] is a sandbox for multi-

threaded execution of untrusted x86 native code in browsers.

The browser extension runs such code in its own address

space, but provides interfaces for side effects to the JavaScript

51

environment. Since Native Client is not supported by all major

browsers, Native Client programs do not run as ubiquitously

as JavaScript and, therefore, Orca programs. Further, Native

Client is not a Web development framework but a code

execution sandbox.

VIII. CONCLUSION

With Orca, development teams can work collaboratively on

all aspects of Web applications. Our framework enables devel-

opment of the client and server in the Smalltalk programming

language, provides access to existing functionality of both

languages, and alleviates client-server communication. Orca,

thereby, unifies client- and server-resident parts and interaction

between them.

Developers neither program in two distinct environments

nor specialize on certain parts of Web applications. Instead of

only gaining expert knowledge on the subset of an application,

the developer and their team share a homogenous, single-

language code base, a consistent vocabulary of idioms and

patterns, and development tools for implementing, testing and

refactoring.

In the future, we want Orca’s compiler to be able to generate

the client-side in two different versions with one of which is

optimized for readability while the other aims on performance

through direct application of JavaScript operators and control

structures. Furthermore, we will restrict remote messaging to

certain global Smalltalk objects to address security concerns.

Nevertheless, the Orca framework already permits the con-

struction of complete Web applications within Smalltalk and,

thereby, enables development teams to work with a single

development solution.

IX. ACKNOWLEDGMENTS

We would like to thank Hauke Klement, Lars Wassermann,

Robert Strobl, Sebastian Woinar, and Stephan Eckardt for their

valuable contributions to Orca. We would also like to express

thanks to Fabian Bornhofen, Thomas Bünger, and Eugenia

Gabrielova for their comments on drafts of this paper.

REFERENCES

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services:
Concepts, Architectures and Applications, 1st ed. Springer, 2010.

[2] A. Taivalsaari, T. Mikkonen, D. Ingalls, and K. Palacz, “Web Browser
as an Application Platform,” in Proceedings of the 2008 34th Euromi-
cro Conference Software Engineering and Advanced Applications, ser.
SEAA ’08. IEEE Computer Society, September 2008, pp. 293–302.

[3] D. Crane and P. McCarthy, Comet and Reverse Ajax: The Next-
Generation Ajax 2.0, 1st ed. Apress, 2008.

[4] T. Mikkonen and A. Taivalsaari, “The Mashware Challenge: Bridging
the Gap between Web Development and Software Engineering,” in Pro-
ceedings of the FSE/SDP Workshop on Future of Software Engineering
Research, ser. FoSER ’10. ACM, November 2010, pp. 245–250.

[5] ——, “Web Applications - Spaghetti Code for the 21st Century,” in
Proceedings of the 2008 Sixth International Conference on Software
Engineering Research, Management and Applications, ser. SERA ’08.
IEEE Computer Society, August 2008, pp. 319–328.

[6] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay, “Back to the
Future: The Story of Squeak, a Practical Smalltalk Written in Itself,” in
Proceedings of the 12th ACM SIGPLAN Conference on Object-oriented
Programming Systems, Languages and Applications, ser. OOPSLA ’97.
ACM, October 1997, pp. 318–326.

[7] D. Crockford, JavaScript: The Good Parts, 1st ed. O’Reilly Media,
2008.

[8] C. Yue and H. Wang, “Characterizing Insecure JavaScript Practices on
the Web,” in Proceedings of the 18th International Conference on World
Wide Web, ser. WWW ’09. ACM, April 2009, pp. 961–970.

[9] M. Anttonen, A. Salminen, T. Mikkonen, and A. Taivalsaari, “Trans-
forming the Web into a Real Application Platform: New Technologies,
Emerging Trends and Missing Pieces,” in Proceedings of the 2011 ACM
Symposium on Applied Computing, ser. SAC ’11. ACM, March 2011,
pp. 800–807.

[10] S. Ruby, D. Thomas, and D. Hansson, Agile Web Development with
Rails, 3rd ed. Pragmatic Bookshelf, 2009.

[11] A. Holovaty and J. Kaplan-Moss, The Definitive Guide to Django: Web
Development Done Right, 2nd ed. Apress, 2009.

[12] M. Jazayeri, “Some Trends in Web Application Development,” in
Proceedings of the 2007 Future of Software Engineering, ser. FOSE
’07. IEEE Computer Society, May 2007, pp. 199–213.

[13] J. Kuuskeri and T. Mikkonen, “Partitioning Web Applications Between
the Server and the Client,” in Proceedings of the 2009 ACM Symposium
on Applied Computing, ser. SAC ’09. ACM, March 2009, pp. 647–652.

[14] J. K. Bennett, “The Design and Implementation of Distributed
Smalltalk,” in Proceedings of the ACM SIGPLAN Conference on Object-
oriented Programming Systems, Languages and Applications, ser. OOP-
SLA ’87. ACM, January 1987, pp. 318–330.

[15] W. Ackermann, “Zum Hilbertschen Aufbau der reellen Zahlen,” Math-
ematische Annalen, vol. 99, pp. 118–133, 1928.

[16] D. Ungar, R. B. Smith, C. Chambers, and U. Hölzle, “Object, Message,
and Performance: How they Coexist in Self,” Computer, vol. 25, pp.
53–64, October 1992.

[17] M. Haupt, M. Perscheid, and R. Hirschfeld, “Type Harvesting: A Prac-
tical Approach to Obtaining Typing Information in Dynamic Program-
ming Languages,” in Proceedings of the 25th Symposium on Applied
Computing, ser. SAC ’11. ACM, March 2011, pp. 1282–1289.

[18] I. Vosloo and D. G. Kourie, “Server-centric Web frameworks: An
Overview,” ACM Computing Surveys, vol. 40, pp. 4:1–4:33, May 2008.

[19] S. Ducasse, A. Lienhard, and L. Renggli, “Seaside: A Flexible Environ-
ment for Building Dynamic Web Applications,” IEEE Software, vol. 24,
no. 5, pp. 56–63, September 2007.

[20] Leighton, Luke K. C., “Pyjamas Book,”
http://pyjs.org/book/output/Bookreader.html, 2009, retrieved December
12th 2011.

[21] M. Serrano, “Programming Web Multimedia Applications with Hop,”
in Proceedings of the 15th International Conference on Multimedia, ser.
MULTIMEDIA ’07. ACM, September 2007, pp. 1001–1004.

[22] F. Loitsch and M. Serrano, “Hop Client-Side Compilation,” in Draft
Proceedings of the 8th Symposium on Trends in Functional Languages,
ser. TFP ’08, 2008, pp. 141–158.

[23] N. Petton, “Amber Documentation,” http://amber-
lang.net/documentation.html, 2011, retrieved December 16th 2011.

[24] D. Ingalls, “The Lively Kernel: Just for Fun, Let’s Take JavaScript Seri-
ously,” in Proceedings of the 2008 Symposium on Dynamic Languages,
ser. DLS ’08. ACM, July 2008, pp. 9:1–9:1.

[25] J. H. Maloney and R. B. Smith, “Directness and Liveness in the Morphic
User Interface Construction Environment,” in Proceedings of the 8th
Annual ACM Symposium on User Interface and Software Technology,
ser. UIST ’95. ACM, December 1995, pp. 21–28.

[26] R. Krahn, D. Ingalls, R. Hirschfeld, J. Lincke, and K. Palacz, “ Lively
Wiki - A Development Environment for Creating and Sharing Active
Web Content,” in Proceedings of the 5th International Symposium on
Wikis and Open Collaboration, ser. WikiSym ’09. ACM, October 2009,
pp. 9:1–9:10.

[27] S. Tilkov and S. Vinoski, “Node.js: Using JavaScript to Build High-
Performance Network Programs,” IEEE Internet Computing, vol. 14,
pp. 80–83, November 2010.

[28] The Dart Team, “Dart Programming Language Specification,”
http://www.dartlang.org/docs/spec/dartLangSpec.pdf, 2011, retrieved
December 16th 2011 (Draft Version 0.06).

[29] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native Client: A Sandbox
for Portable, Untrusted x86 Native Code,” in Proceedings of the 2009
30th IEEE Symposium on Security and Privacy, ser. SP ’09. IEEE
Computer Society, May 2009, pp. 79–93.

52

