
Towards Gaze Control in Programming Environments

Astrid Thomschke? Daniel Stolpe? Marcel Taeumel ? † Robert Hirschfeld ? †
?Software Architecture Group, Hasso Plattner Institute, University of Potsdam, Germany

†Communications Design Group (CDG), SAP Labs, USA; Viewpoints Research Institute, USA
{astrid.thomschke, daniel.stolpe}@student.hpi.uni-potsdam.de

{marcel.taeumel, robert.hirschfeld}@hpi.uni-potsdam.de

ABSTRACT
Elaborated gaze tracking devices are hitting the consumer
market. This gives an existing human-computer interaction
technique the chance to be widely applied in software ap-
plications. Programmers can benefit from this development.
They tend to work on multiple or large screens to interact
with diverse tools in parallel. When programmers switch
between reading and typing, the keyboard focus might not
be where expected. Such distractions leave the programmer
dissatisfied. Gaze information can help to determine which
tool a programmer focusses on.

Our goal is to explore the use of gaze information for pro-
gramming environments. Specifically, we investigate a case
where a programmer’s view focus and the intended keyboard
focus correlate. For specific programming tasks, our work
shows that it is beneficial to set the keyboard focus to a pro-
grammer’s view focus.

CCS Concepts
•Software and its engineering ! Object oriented devel-
opment; Software prototyping; Object oriented frameworks;
Integrated and visual development environments;

Keywords
Gaze Tracking, Gaze Control, Programming Environment,
Integrated Development Environment

1. INTRODUCTION
In a programming environment, users perform various tasks

in multiple software environments. Situations can occur where
the keyboard focus is not set to the expected input field.
These cases create security flaws, distractions and dissatis-
faction. A password can end up in the development chat
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
PX/16, July 18 2016, Rome, Italy

© 2016 Copyright held by the owner/author(s). Publication rights licensed to
ACM. ISBN 978-1-4503-4776-1/16/07. . . $15.00
DOI: http://dx.doi.org/10.1145/2984380.2984384

instead of the password field. A shortcut can close the de-
bugging session instead of a browser tab. Sometimes it is
even unclear if text was typed anywhere at all.

A programmer’s software environment necessitates a huge
amount of information to be visible right next to each other.
Figure 1 visualizes a multi-screen setup consisting of diverse
tools. The programmer has to combine a complex set of
information in order to write code. This includes reading
code and documentation, gathering runtime information, and
keeping the specification in mind. In addition, programming
is a collaborative task that adds chat windows, video calls,
and an email inbox to the environment.

Programmers have to interact with multiple tools and di-
verse content in parallel. This requires careful organization
of available screen space. As a result, it allows programmers
to display all the available information side by side. Soft-
ware development is a profession that makes extensive use
of keyboard shortcuts to navigate such a complex environ-
ment. This often leads to avoiding pointing devices where
possible. As a consequence, visualizing keyboard focus be-
comes even more important.

This problem can easily be solved for situations that re-
quire modal interaction, such as password requests and points
of single access. For example, all content apart from the
modal dialog can be obstructed to guide the users view. How-
ever, this is not a good strategy for workflows that require
more than one source of information to be visible. A second
way is to clearly highlight the focused object. Visualizations
such as shadows, borders, or blinking cursors can quickly
become a design obstacle.

For this work, we assume that the keyboard focus is closely
connected to our view focus. More specific, we assume that
it is beneficial to derive the keyboard focus from a user’s
gaze. We draw our assumption from observations made in
human-to-human communication. Pointing in the direction
we want our opponent to look is not always necessary. For
example, a person can deduce that another person describes
a direction from the conversational context. Explicit point-
ing is rarely required when context information is available.
Following a person’s gaze already provides sufficient infor-
mation about the center of the conversation.

We imagine a programming environment capable of com-
bining context information with gaze to derive the correct

27



Figure 1: Example of a programmer’s screen setup at the top has been simplified in the bottom view. It includes the
code and a shell on the central screen, contextual information adjacent to it and collaboration tools at the very left and
bottom right screen.

keyboard focus. The goal of this project is to consider a
programmer’s gaze when setting the keyboard focus. We
aim to reduce focusing errors that occur when a programmer
switches between reading information and creating code.

2. BACKGROUND
For our research, we distinguish between a general and

a working hypothesis. In this paper, we only evaluate the
latter.

Our general hypothesis is that it is possible to derive the
intended keyboard focus from a users gaze. Our working hy-
pothesis here is that it is possible to set the keyboard focus to
exactly the input field the user is looking at. This excludes
cases in which gaze focus and intended keyboard focus dif-
fer.

We limit our hypotheses to programming environments.

Figure 2: View focus and desired keyboard focus corel-
late, but only in one of four cases.

Figure 2 explains the difference between our general and
working hypothesis. It shows that the view focus and the
desired keyboard focus only correlate in one specific case.
When deciding at any point if the keyboard focus should be
set to an object in a certain area, four situations are possible:

1. The object is in the viewed area and is the desired key-
board focus.

2. The object is in the viewed area but is not the desired
keyboard focus.

3. The object is not in the viewed area but is the desired
keyboard focus.

4. The object is not in the viewed area and is not the de-
sired keyboard focus.

Despite describing similar states, the four points underline
different use cases. First, in order to derive keyboard focus
from view focus, an environment has to be able to set the
keyboard focus where the users view focus is. Second, it
must be possible to detect when the keyboard focus should
not be set if the programmer is looking away from its desired
target. This happens e.g. when using a template to create
content. Third, it must be able to set a keyboard focus to a
target the user is not looking at. When browsing a list of ob-
jects with content, a person will constantly look at the target
where the content is displayed. The list itself, however, has
to catch the keyboard focus. Fourth, the environment must
prevent cases where the keyboard focus is set to a target that
is not viewed.

28



Our work focuses on the first case. We assume that pro-
grammers can deal with an environment that sets the key-
board focus to what they look at. Within the scope of our
work lies evaluating whether this is a reasonable focusing
strategy or if it distracts the user. We also aim at evaluat-
ing different focusing strategies for the purpose of creating
textual. Those are introduced in the next section.

3. RELATED WORK
Our work benefits from research in different areas. On a

technical level, gaze-tracking accuracy constantly improves.
On a medium level, a set of gaze input techniques has been
evolved and tested for a number of tasks. Finally, gaze-
enhancement for specific use cases in common software and
programming environments has been evaluated.

Current gaze tracking systems based on infrared light achieve
accuracies of 0.4°, or an average distance of 24mm from the
actual target with a 60cm distance to the screen [2]. RGB
image based solutions achieve accuracies of 2°[11]. This
means we can assume that it is possible to focus a normal
text area in an integrated development environment (IDE),
but will not succeed in reliably focusing buttons, or even
password input fields, without further algorithmic improve-
ments. Vertegaal also stated the problem of accuracy, but
was able to confirm that Fitts law applies to gaze tracking
techniques [10]. We can therefore assume the scalability of
gaze control to large and multiple screens.

Leveraging gaze as a control technique, Zhai notes that
“the eye has not evolved to be a control organ” [12]. How-
ever, he sees pointing as a acceptable tasks, eventually find-
ing warping to be a preferred pointing technique. Warp-
ing implements a focus point that gravitates towards near
objects. He distinguishes liberal warping that is constantly
changing the focus point, and conservative warping that only
changes focus using a trigger. He finds that liberal warping
was preferred by his users.

When transferring the task of pointing to more complex
use cases, conservative approaches are preferred. In Eye-
Point, Kumar concentrates on selection tasks. He finds that
his users preferred the look-press-look-release, which allows
selecting an element only while a trigger is being pressed
[6]. Kumar also suggests scrolling as a scenario where gaze
control can be useful [7]. Penkar finds benefits from navi-
gating hypertext with gaze [8]. Penkar and Kumar extend a
list compiled by Jacob that also includes continuously dis-
playing attributes, moving objects and invoking menu com-
mands. Jacob also introduces listener windows that are ca-
pable of catching keyboard input once a user looks at them
[5]. We assume that listener windows are the most prevalent
scenario in a programming environment.

In the areas of programming environment, Glücker de-
scribes EyeDE as a gaze-enhanced software development
environment. He shows that invoking menu commands with
gaze is useful for jumping to method declarations and back,
looking up documentation and expanding function bodies.
Glücker also suggests fine-granulated pointing tasks such
as text highlighting. He also implements a gaze-based file

switch, but concentrates on cases where files are stacked in-
stead of arranged side-by-side [3].

4. IMPLEMENTATION
We suggest implementing a gaze-enhanced programming

environment on four levels, as visualized in Figure 3. Each
level allows for context specific adaptions.

Figure 3: We implemented our gaze-enhanced environ-
ment on four layers.

4.1 Hardware
On the hardware level, current gaze tracking systems make

use of eye and head tracking techniques [1]. Eye tracking
calculates the pupil position relative to the eye. Head and
gaze tracking compute a position relative to a device and
typically require calibration. We use a gaze tracking system
for this project. For future projects, adding pure head track-
ing to this level is considered in Section 7.

There are two main techniques to measure the pupil po-
sition required for gaze. First, a standard image can be ex-
amined for features that reconcile eyes. The more accurate
method uses infrared light to discover pupils [11]. However
it might not work with certain illuminations. We decided for
an infrared-based approach, as programmers typically work
in well-lit environments.

To measure the head position, three approaches can be
taken. First, it is possible to fixate a face in relation to the
screen, making head position tracking obsolete. Second, a
head-mounted device can be used to measure tilt, rotation
and distance. Third, head position can be recovered based
on image processing. However, when using two cameras,
it is possible to bypass head position calculation, as in such
cases the pupil position can sufficiently be utilised to calcu-
late its relation to a device. We chose the last approach, as it
combines accuracy with freedom of movement. We used a
Tobii EyeX Controller1 to gather gaze information.

1http://www.tobii.com/xperience/products/

29



4.2 Connector
The information gathered from the hardware can be pre-

processed in order to communicate with the programming
environment. It is possible to establish a connection via low
level adapters that base upon inter-process communication.
A lighter level can be used to communicate gaze informa-
tion to a remote system, e.g. an application running in the
browser. We implemented an inter-process communication
using process standard stream pipes.

On this level, the gaze information can be brought into
a processable format for the programming environment. It
is also possible to modify the frequency of position updates
in order to improve performance. If required, this level of
abstraction allows manipulating the gaze coordinates.

4.3 Software
We chose to implement our chosen aspect gaze control

in the Squeak [4] programming environment. The software
level allows us to implement our working hypothesis, by set-
ting the keyboard focus to the currently viewed object.

It is required to transpose the gaze coordinates received
from the connector to the screen bounds of the programming
environment. If the environment is taking the full screen
space, this step can be avoided.

It is also possible to implement advanced pointing tech-
niques. We chose to work in a live programming environ-
ment, as it can easily be adapted to test different techniques
and scenarios. It also allows simulating a combination of all
tools a programmer requires within one environment.

Being a live programming environment, Squeak provides
us with information about the bounds of all relevant objects
on the screen. It also allows testing different pointing tech-
niques while working in the same environment. We experi-
mented with different warping approaches, as well as cursor
and focus visualizations.2

4.4 Survey environment
We implemented a game that allows us to test the hypoth-

esis we implemented on the software level. Our environ-
ment is supposed to test cases where a programmer has to
rapidly switch between view targets. This simulates gath-
ering information from multiple places, as it is typical in a
programming environment. A programmer is also working
under a certain cognitive load, solving complex tasks. Since
a programmer mainly works with his keyboard, the test task
should mainly consist of typing.

Combining those properties, we implemented a game where,
in random screen positions, workspaces appear. To trigger
the next workspace, a math question has to be solved. This
creates a certain cognitive load for the participant. The an-
swer has to be typed into the workspace, after it is focused.
Figure 4 shows an example workspace.

The benefit of having this game in a live programming
environment is that we can easily adapt it in order to test
scenarios two, three and four of Figure 2.
2See https://www.youtube.com/watch?v=SNm0B0PTYQI
for a demonstration of our prototypical implementation.

Figure 4: The user has to type the answer to the question
in the top line into the workspace body.

5. EVALUATION
We asked twelve programmers to play the implemented

game. Each participant took two runs, one using the mouse
as pointing device, and one where keyboard focus was con-
tinuously set to gaze focus. A run defined as 40 seconds,
where numbers between zero and ten were added. We al-
lowed for five questions of adjusting to the environment.
Before running with gaze control, participants calibrated the
gaze tracking system. For each run, we measured the num-
ber of correct and wrong answers. The accumulated amount
of solved questions allowed us to see if pointing with gaze
significantly differed from using a mouse. The amount of
correct answers gave us information about the cognitive load.
A significant increase of wrong answers could point us to
increased cognitive load, or distraction. We conducted retro-
spective interviews in order to learn about participants feel-
ings towards gaze control and also collect further ideas.

Users averaged at 27 answers per minute using a mouse,
and 25.5 using gaze. They always gave one or less wrong
anwers. There was neither a significant drop in the number
of solved questions nor increase in wrong answers. Thus we
can assume that participants were able to focus with gaze
without performance drops. During the interview, we found
that most participants were impressed by the accuracy of
gaze control. The quickest person stated being on the verge
of feeling “cheated at” whenever the measured gaze coordi-
nates were slightly off. One participant continued to work in
our environment for several minutes. He found that he felt
“exhausted after working with the gaze tracker for a longer
time”. Three participants stated that they had to focus the
workspace center instead of the question itself, which was
placed near the top border of the workspace. Due to inaccu-
racies, looking at an objects edges would not set the focus
the the object.

All participants gave us further ideas for gaze interaction.
Everyone had a blink-to-confirm interaction in mind, but
quickly withdrew the idea when simulating it, finding it too
similar to the natural reflex of blinking. Users also suggested
gestures such as nodding or shaking the head for confirma-
tion and denial. One suggested allowing for concentrated
work in a single workspace by having a parking area for a
gaze cursor. When looking into the top right corner, for ex-
ample, the gaze cursor could be parked or picked up.

30



6. DISCUSSION
We benefitted from working in the same programming en-

vironment that we conducted our study in. Our user study
and the gaze control techniques were both implemented in
Squeak. We implemented our evaluation game using the de-
scribed focusing strategies ourselves. We later combined the
experiences we made here with the retrospective interview
results.

6.1 Refinements
During our work we kept adapting our system to test non-

ideal settings and tweak the programming experience.

100ms threshold.
Zhai arguments against a time threshold that controls when

a target should be selected and instead suggests liberal warp-
ing [12]. We found it helpful though to account for rapid eye
movements and errors to set the threshold to less than 100ms
until an object is focused.

No pointer.
We felt most comfortable with not moving a cursor at all

for tasks similar to programming. Instead, we only set the
keyboard focus to the currently viewed input field. When
working with text, fine granular movements of the mouse
cursor as described by Zhai [12] are not required as program-
mers rather use the keyboard here.

Centered information.
We found that it was simpler to focus elements when in-

formation was placed in the center rather than at the edges of
a text area. The gaze tracking coordinates differ about 2cm
from the actual gaze. When focusing adjacent workspaces,
this inaccuracy makes it difficult to determine which workspace
a programmer is looking at. When information is placed in
2cm distance to an area’s border, keyboard focus can be set
with more confidence.

Target size.
Our setup was too inaccurate to focus a single input line.

This affects single-line inputs such as passwords or chat clients.
However, adding a half line margin makes it possible to au-
tomatically focus those inputs.

6.2 Opinions and feelings
There were some major pain points with gaze-based fo-

cusing, whose origins are open for discussion.

Importance of gaze accuracy.
The hardware setup we used seemed sufficiently accu-

rate. We let some of our participants skip the calibration
to simulate a long coding session that includes leaving the
workspace. This created just slight offsets, which had im-
mense effect. Users felt cheated at and annoyed. They wanted
to adapt to the offset and demanded to see which caze coor-
dinates the environment had computed.

It seems that usually users can adjust to a slight offset of

pointing devices. For gaze control, however, we see that
accurate gaze tracking is immensely important.

Cognitive load.
Working in a gaze-enhanced environment felt more strain-

ing for the eyes than usual.
We assume that, when eyes are to a certain extend used

as a control organ, cognitive load is increased. The reason
might be that users become aware of the usually subscon-
cious pupil movements.

6.3 Gaze gestures
We considered the use of head and gaze induced gestures

our participants suggested during evaluation in Section 5.

Parking lot.
Some programming tasks consist of long reading passages

where a keyboard focus is not required at all. In order to
decrease cognitive load as reported in 6.2, a sensitive area
could allow for pausing gaze control. When viewed, such an
area could toggle automatic keyboard focus setting.

Such a technique introduces a modal interaction. This re-
quires cautious implementation in order to reduce the danger
of confusion by obscured state.

Head gestures.
In order to confirm or deny actions, simple gestures like

nodding or shaking the head were suggested. Such gestures
depend on the cultural context, but might be intuitive enough
to use. On the contrary, we expect the interpretation of pupil
movements to massively increase the cognitive load.

Facial expressions.
Pfister reports promising results [9] in automatically de-

tecting and interpreting facial expressions. An expression of
confusion could be used to automatically show contextual
information. Anger could indicate questionable code qual-
ity. Signs of exhaustion could be used to suggest a break.

Blinking.
Triggering an action by blinking is a simply detectable

gesture. Blinking is, however, a frequently performed intu-
itive action. We expect that reacting to such an interaction
introduces a high rate of false positives. We also expect a
blink-based trigger to confuse and exhaust users.

7. FUTURE WORK
We see our work on gaze-based keyboard focus setting in

a programming environment as a first exploration. The main
focus of our future work in this area will be the identification
of further use cases in programming environments that can
be enhanced with gaze tracking information. Glücker [3]
concentrates his work on menu and file navigation. We will
aim at tasks where the eye takes over less control actions.

Based on our experience, we have claimed that program-
mers frequently use the keyboard instead of a pointing de-
vice to focus a text area. We plan on following this obser-

31



vation to find out when a pointing device is actually used.
That way we expect to identify more use cases where gaze
information can be of use.

The situations identified in Section 2 will be in our imme-
diate focus. We will test an environment where information
is further away from input fields. We will also concentrate
on how to browse lists while viewing on their content.

In order to implement these two use cases, it might be
required to treat UI elements differently based on desired
behavior. E. g., a list in a browser might have to interpret
arrow keys although a user is not looking at it. It is possible
that a context-oriented programming approach can be taken.

Our work has raised several questions. The perceived cog-
nitive load described in Section 6.2 needs further investiga-
tion. In the context of our implemented framework, the time
used to solve a question and the time used to focus it have to
be measured independently. Increased cognitive load could
account for a longer thinking time, which might have been
obscured by a shorter pointing time.

8. CONCLUSION
In this work, we explored techniques that make use of

gaze tracking information. Our objective was to apply such
techniques in a programming environment.

We concentrated on understanding which element a user
intends to manipulate by evaluating his gaze. We described
required capabilities of a programming environment that can
derive keyboard focus from gaze information. Specifically,
we investigated if it is practicable to set the keyboard fo-
cus to the screen coordinates of a programmers gaze. We
extended a live programming environment accordingly and
tested it with a simple task. We found that programmers
were able to use gaze for setting the keyboard focus.

We generalized our test setup based on our experiences,
showing points where such an environment can be modified
in order to compare different approaches. We will use this
setup in the future to continue our explorations.

While working in a gaze-enhanced environment, we found
that accuracy is very important when controlling aspects of
it with gaze. However, even with a very accurate setup, we
found hints that gaze control seems to cause fatigue and will
elaborate on this topic.

We learned that it is feasible to derive the keyboard focus
from view focus in certain situations. For future work, we
have set our main objective to evaluating situations where
view focus and keyboard focus diverge. Based on our ex-
plorations in this area, we expect that the strategies we pre-
sented can successfully be adapted in a programming envi-
ronment.

9. ACKNOWLEDGEMENTS
We gratefully acknowledge the financial support of HPI’s

Research School3 and the Hasso Plattner Design Thinking
Research Program.4

3www.hpi.uni-potsdam.de/research_school
4www.hpi.de/en/research/design-thinking-research-program

10. REFERENCES
[1] H. R. Chennamma and X. Yuan. A Survey on

Eye-Gaze Tracking Techniques. Engg Journals
Publications, 2013.

[2] A. Clemotte, M. A. Velasco, D. Torricelli, R. Raya,
and R. Ceres. Accuracy and Precision of the Tobii
X2-30 Eye-Tracking Under Non Ideal Conditions,
2014.

[3] H. Glücker, F. Raab, F. Echtler, and C. Wolff. EyeDE:
Gaze-Enhanced Software Development Environments.
In Proceedings of the International Conference on
Human Factors in Computing Systems (CHI), pages
1555–1560. ACM, 2014.

[4] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and
A. Kay. Back to the Future: The Story of Squeak, a
Practical Smalltalk Written in Itself. 32(10):318–326,
1997.

[5] R. J. Jacob. The Use of Eye Movements in
Human-Computer Interaction Techniques: What You
Look at is What You Get. Transactions on Information
Systems (TOIS), 9(2):152–169, 1991.

[6] M. Kumar, A. Paepcke, and T. Winograd. Eyepoint:
Practical Pointing and Selection Using Gaze and
Keyboard. In Proceedings of the International
Conference on Human Factors in Computing Systems
(CHI), pages 421–430. ACM, 2007.

[7] M. Kumar, T. Winograd, and A. Paepcke.
Gaze-Enhanced Scrolling Techniques. In Proceedings
of the International Conference on Human Factors in
Computing Systems (CHI), pages 2531–2536. ACM,
2007.

[8] A. M. Penkar. Hypertext Navigation with an Eye Gaze
Tracker. PhD thesis, ResearchSpace at Auckland,
2014.

[9] T. Pfister, X. Li, G. Zhao, and M. Pietikäinen.
Recognising Spontaneous Facial Micro-Expressions.
In Proceedings of the International Conference on
Computer Vision (ICCV), pages 1449–1456. IEEE,
2011.

[10] R. Vertegaal. A Fitts Law Comparison of Eye
Tracking and Manual Input in the Selection of Visual
Targets. In Proceedings of the International
Conference on Multimodal Interfaces (ICMI), pages
241–248. ACM, 2008.

[11] X. Xiong, Z. Liu, Q. Cai, and Z. Zhang. Eye Gaze
Tracking Using an RGBD Camera: A Comparison
With a RGB Solution. In Proceedings of the
International Joint Conference on Pervasive and
Ubiquitous Computing (UbiComp), pages 1113–1121.
ACM, 2014.

[12] S. Zhai, C. Morimoto, and S. Ihde. Manual and Gaze
Input Cascaded (MAGIC) Pointing. In Proceedings of
the International Conference on Human Factors in
Computing Systems (CHI), pages 246–253. ACM,
1999.

32


	Contents
	How Live are Live Programming Systems? Benchmarking the Response Times of Live Programming Environments (Patrick Rein, Stefan Lehmann, Toni Mattis, Robert Hirschfeld)
	Patrick Rein, Stefan Lehmann, Toni Mattis, Robert Hirschfeld

	Satisfaction, Time Investment, and Success in Students' Programming Exercise (Amir Kirsh and Iris Gaber)
	Amir Kirsh and Iris Gaber

	Towards Making a Computer Tutor for Children of All Ages (A Memo) (Yoshiki Ohshima, Alessandro Warth, Bert Freudenberg, Aran Lunzer, and Alan Kay)
	Yoshiki Ohshima, Alessandro Warth, Bert Freudenberg, Aran Lunzer, and Alan Kay

	Towards Gaze Control in Programming Environments (Astrid Thomschke, Daniel Stolpe, Marcel Taeumel, and Robert Hirschfeld)
	Astrid Thomschke, Daniel Stolpe, Marcel Taeumel, and Robert Hirschfeld

	Exemplifying Moldable Development (Andrei Chis, Tudor Girba, Juraj Kubelka, Oscar Nierstrasz, Stefan Reichhart, and Aliaksei Syrel)
	Andrei Chis, Tudor Girba, Juraj Kubelka, Oscar Nierstrasz, Stefan Reichhart, and Aliaksei Syrel

	Evolving User Interfaces From Within Self-supporting Programming Environments: Exploring the Project Concept of Squeak/Smalltalk to Bootstrap UIs (Marcel Taeumel and Robert Hirschfeld)
	Marcel Taeumel and Robert Hirschfeld


