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Abstract

The architecture of interactive systems does not match the proce-
dural decomposition mechanisms available in most programming
languages, leading to architectural mismatch.

Constraint systems have been used only as black boxes for
computing with primitive values of a specific type and for specific
domains such as user interface layouts or program compilation.

We propose constraints as a general-purpose architectural con-
nector for both describing the large-scale structure of interactive
systems and matching that description with the actual implementa-
tion.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features— Constraints ; D.2.1
[Software Architectures]: Domain-specific architectures

Keywords  Architecture;Connectors;Constraints;Polymorphism

1.

Interactive programs have been characterized as time-consuming
and error-prone to produce [33] [34]. One of the reasons for this
assessment is the architectural mismatch [24]] between procedural
programming languages and the decidedly non-procedural nature
of interactive programs [13].

Due to the linguistic primitives available, programming lan-
guages carry with them a preferred architectural style, and strongly
encourage programs written in that language to follow that archi-
tectural style. For popular programming languages used in the con-
struction of interactive programs, such as Java, C#, Objective-C and
JavaScript that is the call-and-return architectural style [44]: con-
trol flow is in the hand of the program, functions and methods are
called and return results to their caller.

Interactive programs do not match this style; they typically do
not compute results and do not return to their caller. Instead they
maintain various invariants while reacting to input from their envi-
ronment, including the user and often nowadays the network. Al-
though these invariants can be and often are implemented proce-
durally, the overall structure of the program does not resemble a
procedure.

Introduction

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

MODULARITY’16, March 14-17, 2016, Mdlaga, Spain
ACM. 978-1-4503-3995-7/16/03...
http://dx.doi.org/10.1145/2889443.2889456

Robert Hirschfeld

t Hasso Plattner Institute, University of Potsdam, Germany
¥ Microsoft, Germany
§ Communications Design Group (CDG), SAP Labs, USA; Viewpoints Research Institute, USA

134

robert.hirschfeld@hpi.de

While working on various applications including a widely used
task management app, we have found that the top level architec-
ture can often best be described as a series of equality constraints
maintained between the main components of the system. The user
interface should reflect the state of the in-memory model as should
the on-disk representation, and all of these should be synchronized
with the data on other devices, including the user’s own and other
users’ in case of shared data.

Maintaining invariants is a good fit for constraints, but con-
straints have so far been used primarily as computational compo-
nents to solve domain specific problems such as user interface lay-
out, logical puzzles or optimization problems.

In addition, constraint solvers have been constructed as black
boxes acting on specific data types, limiting their use as structuring
elements to specific solver implementations and data types.

Instead, we see constraints as a structuring mechanism for de-
scribing relationships between components, even when these are
implemented without a black-box constraint solver, or even with-
out any kind of identifiable solver. In short, they are architectural
connectors.
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Listing

Listing [T] describes the high-level architecture of the Mac and
1i0S Wunderlist [|32] clients:

e Line 1 initializes the memory model from the persistence layer
using a high-level assignment operation (:=).

e Line 2 uses the one-way dataflow connector |= to keep the
persistency layer in-sync with changes to the memory model.

e Line 3 uses the bi-directional dataflow connector =|= to keep
the memory model and the Ul in sync with each other.

e Finally, line 4 also uses the bi-directional dataflow connector
=|=to keep the memory model in sync with the back-end.

Although we use only two dataflow connectors (one-way |=and
two-way =| =) to describe the relationships between the Wunderlist
components, the implementations of those connectors differ signif-
icantly depending on which components they connect and on the
direction of the connection.

It should be noted that these are not all the components in the
application, nor all the connections between components. Nor is it
the only way to structure the application. However it is a useful
decomposition that captures significant architectural elements and
their interactions and would be recognizable to the developers
working on the system.



We therefore propose treating constraints as a polymorphic ar-
chitectural connector [42] [39], both in their use and in their inter-
nal construction. These constraint connectors are useful for describ-
ing the overall architecture of interactive systems like the collabo-
rative task list manager shown in Listing[T] whether those top-level
connectors are themselves implemented using constraints or not.

In the remainder of the paper we will first show the types of
problems encountered in building interactive software with a brief
example. Next we describe the constraint connector mechanism
and a polymorphic treatment of constraint connectors by showing
several useful variants and their application to the motivating exam-
ple. We then show how those same mechanisms apply to the indus-
trial example shown in Listing [I] Finally we present related work
in software architecture and constraint programming and point out
future avenues of research opened by this approach.

2. Motivating Example

As an example of the architectural issues faced when assembling
even fairly straightforward interactive applications, we will look at
a temperature converter application that converts between different
temperature scales, starting with Fahrenheit and Celsius.

2.1 Objective-Smalltalk

All code presented here is expressed in Objective-Smalltalk [S0]], a
Smalltalk [25] dialect. Objective-Smalltalk generalizes Smalltalk’s
support for object-oriented programming to support for defining
and using architectural connectors and borrows method-definition
syntax from Objective-C. It also generalizes identifiers to Polymor-
phic Identifiers, which look like URIs in code [52]]. The goal is for
these enhancements to allow Objective-Smalltalk to come close to a
Domain Specific Language (DSL) [31] in expressiveness for many
common tasks.

1 obj msg. // unary obj.msg ()

2 obj msg:7. // keyword obj.msg(7)

3 3 x 4, // binary 3.%(4)

4 ¢ o= T. // assignment

5 -c { // instance method

6 “ivar:c // return instance var c
7}

8 ivar:field/value // field.value;

Listing 2. Objective-Smalltalk Syntax

Listing 2] gives a quick overview of the Objective-Smalltalk
syntax: an instance method of a class is introduced with the a
minus sign, followed by the method signature and the method
body enclosed in curly braces. Class methods would be introduced
with the plus sign, but we don’t have any class methods in these
examples. Syntax inside methods is Smalltalk, with unary, binary
and keyword messages, statements terminated with periods and
method return indicated by the up caret.

Identifiers look like URIs, with a scheme separated from the
path by a colon, so ivar:c is the variable c in the ivar (instance
variable) scheme. Components of a path expression are separated
by the slash character typical of file systems rather than the dots
more typical of languages like Java.

2.2 Basic Model

The basic model of the temperature converter consists of storage
for the temperature and methods to set and inquire that temperature
in different temperature scales. An implementation of the model
object is shown in Listing [3] To its clients it presents an interface
with two properties, ¢ and f representing the temperature in Celsius
and Fahrenheit respectively. Internally, it stores the temperature in
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a hidden instance variable ¢ and derives the Fahrenheit value on-
demand, as well as converting Fahrenheit values on input.

:degreesF {
self c:(degreesF - 32) / 1.8.

- £ {
" self c *x 1.8 + 32.

:degreesC {

ivar:c := degreesC.

[l

c {

“ivar:c.

B S22 vwuouswn—
|
o

[u—}

Listing 3. Basic Temperature Converter Model

To keep the exposition manageable, we don’t show boilerplate
class definitions, instance variable definitions and generic applica-
tion initialization code.

2.3 Connecting UI Elements

For the UI, we assume we have text fields set up to input and display
numbers using Apple’s Cocoa UI toolkit [3]]. Our code for hooking
up those text fields to the model is shown in Listing[d] The code for
creating, positioning and configuring the text fields is not shown,
because we are primarily interested in the connecting code.

Lines 1-7 contain target/action methods that are called by
the text fields either when the user finishes editing or on every
keystroke, depending on how the fields are configured. Each tar-
get/action method has a sender parameter that contains a refer-
ence to the control that sent the action message. In our case, we ask
the control for its numeric value and set that as the corresponding
temperature, either Fahrenheit or Celsius depending on the actual
control.

So far we have only had straightforward additions, but in order
to update the calculated values in the UIL, we have to modify our
existing setter methods, both the “virtual® setter for Fahrenheit that
just computes a Celsius value and the actual setter for the Celsius
value.

Each of these setters updates the other UI value, setting Celsius
needs to update the Fahrenheit text field, but not the Celsius text
field because that is presumably where the value originated.

1 - changedF:sender {

2 self f:sender intValue.

3}

4 - changedC:sender {

5 self c:sender intValue.

6 X

7 - f:degreesF {

8 self c:(degreesF - 32) / 1.8.

9 ivar:ui/celsiusTextField/intValue := self c.
0}

n - f {

12 ~ self ¢ * 1.8 + 32.

13}

14 - c:newValue {

15 ivar:c := newValue.

16 ivar:ui/fahrenheitTextField/intValue := self f.
17}

18 - c {

19 “ivar:c.

20 }

Listing 4. Connecting Ul via messages

While seemingly straightforward, the code in Listing [4] has a
slight problem, at least if we are serious about minimizing Ul up-
dates: when setting Fahrenheit values, we call the Celsius setter



after computing the correct temperature, meaning that we do re-
dundantly update the UI with an already present value, at least in
the case we convert Fahrenheit to Celsius.

Listing [5] fixes this problem by splitting the Celsius setter into
two parts, one low-level part that doesn’t do UI updates and is
called when converting from Fahrenheit, and one high-level part
that is called when actually entering Celsius for conversion and
does do the UI update. (Only the methods that were changed are
shown).

- f:degreesF {
self basicC:(degreesF - 32) / 1.8.
ivar:ui/celsiusTextField/intValue := self c.
}
- c:newValue {
self basicC:newValue.

ivar:ui/fahrenheitTextField/intValue := self f.

S22 0o a0 wvswn —

- basicC:newValue {
ivar:c := newValue.

Listing 5. Minimizing UI updates

2.4 Adding Persistence

Adding persistence also requires making modifications to existing
code, though only to a single method which is why Listing [ only
shows that single modified method. Whenever we set a new Celsius
value, we write this value to the user defaults database.

- basicC:newValue {
ivar:c := newValue.
NSUserDefaults standardUserDefaults
setObject:newValue forKey:’c’.
self updateUI.

A U oE W -

Listing 6. Persistence using native API

As we can see, the cover setter method for the Celsius variable
is getting to be a hub of changes for any additional architectural
dependencies.

To make the code more comparable to the constraint solution
we build in Section [] Listing [7] shows the same code expressed
with a Polymorphic Identifier using the defaults scheme instead
of a message-send to the NSUserDefaults shared instance. The
two pieces of code have the same semantic.

- basicC:newValue {
ivar:c := newValue.
defaults:c := ivar:c.
self updateUI.

woE W =

Listing 7. Persistence using Polymorphic Identifier

This is a very simple persistence solution, as we are only con-
cerned about a single value, without any relationships, object iden-
tity or complex queries to worry about. In a more complex appli-
cation, dealing with persistence is likely to be much more trouble-
some [36].

2.5 Adding a Temperature Scale

Adding a new temperature scale, in this case the Kelvin scale that
starts at absolute zero, involves adding the conversion methods for
the new scale, adding UI elements (not shown) and hooking them
up to the model, shown in Listing|[§]
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1 - changedF:sender {

2 self f:sender intValue.

3}

4 - changedC:sender {

5 self c:sender intValue.

6 1}

7 - changedK:sender {

8 self k:sender intValue.

9 }

10 - f:degreesF {

11 self basicC:(degreesF - 32) / 1.8.

12 ivar:ui/celsiusTextField/intValue := self c.
13 ivar:ui/kelvinTextField/intValue := self k.
4}

15 - £ {

16 " self ¢ * 1.8 + 32.

17}

18 - k:degreesK {

19 self basicC:(degreesF - 273.15.

20 ivar:ui/celsiusTextField/intValue := self c.
21 ivar:ui/fahrenheitTextField/intValue := self f.
2}

23 -k {

24 - self ¢ + 273.15.

25}

2% - c:newValue {

27 self basicC:newValue.

28 ivar:ui/fahrenheitTextField/intValue := self f.
29 ivar:ui/kelvinTextField/intValue := self k.
0 )

31 - ¢ o

32 “ivar:c.

33}

basicC:newValue {
defaults:c := ivar:c.

ivar:c := newValue.

Listing 8. Adding Kelvin scale

Most of the code consists of straightforward if tedious additions,
except for the code keeping the Ul in sync with the model. Every
method that sets a new value for a specific temperature has to
be modified to update the respective other temperature text fields
(assuming that the change originated in the UI).

At this point, it becomes clear that our original strategy of
updating the UI from the individual setter methods is probably not
tenable in the long run. Listing[Q]replaces this distributed logic with
a centralized —updateUI method that updates all of the UI from the
model. This method is only invoked from the -c: accessor method.
While this change simplifies the code, it removes the optimization
that prevented updating the Ul element that initiated the change.

The solution in Listing [9] starts to approximate a true Model
View Controller (MVC) [27][29] approach. However, the Ul ele-
ments are widgets, not classical Views, so they contain their own
data rather than referring to and refreshing themselves from the
model. Updated data must therefore be pushed to them, they can-
not pull it after receiving a #changed notification. Actually imple-
menting the MVC pattern in this instance would therefore entail
introducing an intermediate layer that mediates between the wid-
gets and the model, listening to #changed notifications and pulling
data from the model and pushing to the widgets.

2.6 Discussion

As we have seen, even a conceptually very simple application such
as a temperature converter quickly attracts significant complexity
with non-obvious trade-offs once the requirements of an interactive
version of that application are taken into account.

This complexity is not the result of a complicated domain
model, but rather of the architectural embellishments required to
move data from location to location in order to keep the different



1 -updateUI {

2 ivar:ui/celsiusTextField/intValue := self c.
3 ivar:ui/fahrenheitTextField/intValue := self f.
4 ivar:ui/kelvinTextField/intValue := self k.
s}

6 - f:degreesF {

7 self c:(degreesF - 32) / 1.8.

s}

9 - £ {

10 ~ self c *x 1.8 + 32.

n o r

12 - k:degreesK {

13 self c:(degreesF - 273.15.

14}

15 - k {

16 " self ¢ + 273.15.

17}

18 - c:newValue {

19 ivar:c := newValue.

20 self updateUI.

21}

2 - c{

23 “ivar:c.

24}

Listing 9. Centralized UI update

parts of the application (model, user interface, persistence) syn-
chronized. In the next section, we will look at a mechanism for
simplifying this kind of overhead.

3. Constraint Connectors

Constraint connectors are a mechanism for addressing the architec-
tural problems faced by interactive applications. They generalize
the concept of a one-way dataflow constraint [47] from an element
that is part of a constraint solver to a general architectural element
that can be implemented in many different ways, including using a
constraint solver.

A constraints connector connects at least two constraint vari-
ables, one target variable and one or more source variables. Con-
straint variables are storage locations that have a mechanism for
detecting that they have been changed and somehow notifying the
rest of the system of such a change. The relationship between these
variables is defined by using a mix of declarative and procedural
techniques. The fact that there is a relationship that should hold
between the variables is declared by their participation in the con-
straint. What the exact nature of the relationship is is defined pro-
cedurally using an update method that computes the value of the
target variable from the source variables.

When a source variable changes, the constraint is no longer
satisfied, the update method must be run to re-satisfy the constraint.

3.1 Push Evaluation

The simplest way of implementing an equality constraint is when
the source variable knows about the target variable and new values
can simply be pushed to the target whenever the source changes.

source target

Figure 1. Push Evaluation

Architecturally, there must be at least a direct variable reference
to the target that is available to the source and offering at least a
PUT operation, or more generally an update procedure. See Fig-

ure[Il
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With Polymorphic Identifiers, this reference can be any type of
resource, be it an in-memory variable, file or network resource.

3.2 Pull Evaluation

When the target knows about the source, but not vice-versa, push
evaluation is not possible. This can be due to physical constraints,
for example a server in a client-server may not have a permanent
connection to its clients, and therefore cannot inform the clients
of changes to data. It can also be due to architectural constraints,
typically to avoid cyclical dependencies.

In the case of pull evaluation (see Figure[2), the architecture of
the constraint connector must contain at least a variable reference
from target to source and a GET operation or update procedure. In
addition, t here must also be some mechanism for communicating
to the target that the source is out of date.

GET

~notify -

Figure 2. Pull Evaluation

Most typically this update/out-of-date notification is some form
of implicit invocation mechanism [37], but this is not necessary. All
that is needed is some way of notifying the target that the source has
changed and therefore the target is out of date and must be updated.
If all else fails, the target can regularly poll the source to check
for changes. Although this is not a typical (and likely inefficient)
implementation of the notification mechanism, it is sufficient for a
pull-evaluation dataflow constraint.

3.3 Constraint Solvers

Dataflow constraint solvers such as Deltablue [23]], ThingLab [[11]
or Amulet/Garnet [47] are a convenient way of implementing con-
straint connectors. Internally, they use what are essentially con-
straint connectors with either push or pull evaluation. In addition,
they often maintain global knowledge of the entire constraint graph,
which can make evaluation of updates more efficient.

However, it is not necessary to implement all (or even any) parts
of an application using a constraint solver in order to use constraint
connectors. All that is needed are code components that implement
the communication patterns matching the general structure of either
a push- or pull-evaluated constraint connector.

3.4 Model View Controller

Model View Controller [29] is a widespread pattern for keeping
one or more views synchronized with a model and vice versa. The
model = view update pattern (see Figure [3) closely matches the
pull evaluation style constraint connector. With constraint connec-
tors as a language feature, we can directly express the view update
part of the MVC pattern in code, regardless of how the pattern is
actually implemented.

GET (+ redisplay)

view

Figure 3. MVC View Update

The controller = model communication on the other hand
largely matches a push evaluation constraint connector, at least if



the views in questions are widgets that maintain their own internal
state.

3.5 Filesystem

The clear definition of the pieces of a constraint connector makes
the implementation pluggable. With a kqueue [28|] based file
change notification mechanism, it becomes possible to integrate file
maintenance into the system, for example if communication is file-
based or to implement make-style file maintenance rules such as
that shown in Figure[d]

GET

example.c’

kqueue(2)

’example.o’

Figure 4. make

4. Evaluation

We can now rebuild the temperature converter from Section [2]

using constraint connectors. We use a variant of the DeltaBlue [23]
incremental dataflow constraint solver embedded into Objective-
Smalltalk and made applicable to multiple domains by making
variable access and change notification mechanism flexible using
Polymorphic Identifiers.

Syntactically, one-way dataflow constraints are expressed using
the |= connector. The constraint expression 1hs |= rhs is very
similar to the assignment expression 1hs := rhs, the difference
being that an assignment is evaluated once, whereas the constraint
is maintained by the system, a sort of perpetual assignment. The
variable on the left hand side is constrained to be equal to the
formula (update procedure) on the right hand side. Whenever a
variable referenced on the right hand side is changed, the left hand
side is updated by re-evaluating the update formula.

DeltaBlue handles multi-way constraints, so multiple update
formulae referencing the same variables are combined into a sin-
gle constraint. In the case of the constraints being simple equality,
rather the complex formulae, the bi-directional constraint connec-
tor =| = can be used as a shorthand for specifying the two symmetric
update formulaea |= bandb |= a.

The solver handles the cycles created with multi-way con-
straints by only considering one direction of a multi-way constraint
in an update cycle.

The initial model shown in Listing |[10] has mostly superficial
differences from the initial example in Listing[3} instead of a single
variable for Celsius, both Fahrenheit and Celsius are represented
as instance variables. The constraints specifying their relationships
are encoded directly and independently from setters and getters,
which are hidden.

I divar:f |= (9.0/5.0) * ivar:c + 32 .
2 ivar:c |= (ivar:f - 32) * (5.0/9.0).

Listing 10. Basic Temperature Converter Model

The update logic is triggered automatically whenever a variable
is modified to keep the other variable in sync.

4.1 Adding User Interface

The architectural differences become more noticeable when adding
UL, as shown in Listing [TI] The code to hook up the UI is purely
additive, which is why Listing [TT] only shows the additions. It
defines two additional bi-directional dataflow constraints that keep
the instance variables synchronized with their respective Ul text
fields.

1 ivar:ui/celsiusTextField/intValue =|= ivar:c.
2 ivar:ui/fahrenheitTextField/intValue =|= ivar:f.

Listing 11. Adding UIL

The original model code does not need to be updated, because
the update logic is implicit in the constraint definitions. Optimally
updating only the values that have changed, so for example only the
dependent values when changing is also implicit in the connector
definition, and implemented behind the scenes in the constraint
solver.

4.2 Adding Persistence

Adding persistence is as easy as adding a constraint from one of the
temperature instance variables to the persistent variable, it doesn’t
really matter which.

1 ivar:c := defaults:celsius.
2 defaults:celsius |= ivar:c.

Listing 12. Adding Persistence

Referring to the persistent variable using the Polymorphic Iden-
tifier defaults:celsius makes it possible to place it on the left
hand side of a constraint connector ( |=), something that would
have been much more difficult with the method API (Listsing [6]
lines 3-4).

4.3 Adding a Temperature Scale

This time, adding the Kelvin temperature scale is also purely addi-
tive. We add an instance variable ivar:k to hold the temperature
in degrees Kelvin (not shown), connect an additional text field to
that field and define additional constraints relating the Kelvin and
Celsius instance variables. These additions are shown in Listing[T3]

1 ivar:ui/kelvinTextField/intValue =|= ivar:k.
2 ivar:k |= ivar:c + 273.15.
3 ivar:c |= ivar:k - 273.15.

Listing 13. Adding a Temperature Scale

This brings us to the (almost) complete temperature converter
application shown in Listing It shows all the elements of the
application and how they interact. It is not only more compact than
the non-constraint version in Listing[9] but actually handles a few
details that were elided in that version, such as initialization from
persistence and hooking up the text fields to the model.

The complete program is the simple concatenation of the indi-
vidual pieces, no modifications of previous code was necessary.

4.4 Deriving High Level Architecture

Grouping the three text fields into the ui, the three temperature
variables into memory-model and the defaults database access into
persistence, we arrive at the high-level architecture shown in
Listing T3]

Unlike the previous listings in this section, Listing[I3]is pseudo
code, because we don’t yet have the required grouping mecha-
nism for constraints. However, the distance from this higher-level



1 ivar:ui/celsiusTextField/intValue =|= ivar:c
2 ivar:ui/fahrenheitTextField/intValue =|= ivar:f
3 ivar:ui/kelvinTextField/intValue =|= ivar:k
4

5 divar:f |= (9.0/5.0) * ivar:c + 32

(ivar:f - 32) * (5.0/9.0).
ivar:c + 293.
ivar:k - 293.

6 ivar:c
7 ivar:k
8 ivar:c

ivar:c := defaults:celsius.
11 defaults:celsius |= ivar:c.

Listing 14. Complete Temperature Converter

1 ui =1
2 memory-model

3 persistence |

memory -model.
persistence.
memory -model .

Listing 15. High Level Architecture of Temperature Converter

grouped description to the lower-level ungrouped implementation
in Listing[T4]is small and straight-forward to bridge.

4.5 Discussion

The overall architecture of the temperature converter shown in List-
ing[I3]is also almost identical to the task management client appli-
cation architecture shown in Listing[T] which is as it should be be-
cause both applications have a UI that interacts with an in-memory
model that is persisted. The main difference is that the task man-
agement application additionally synchronizes via a cloud-based
backend, and that difference is readily apparent from comparing
the two listings.

Another result of the similarity between these two listings is that
the constraint-connector formulation of the architecture appears to
clearly separate functional/domain aspects from architectural/struc-
tural aspects.

5. Application

Having constructed a toy example application with constraint con-
nectors provided by a constraint solver bottom up, we are now go-
ing to deconstruct the architecture of a real world task management
application using constraint connectors top down.

The use of constraint connectors was not a planned characteris-
tic of the system, but rather something that emerged as the appli-
cation was built: different parts of the system needed to be kept in
sync which each other both within the process and across process
and machine boundaries. Once the mechanisms had been built, it
became apparent that in each case the individual pieces that had
been built were parts of a constraint connector.

As the application is built with Objective-C, there is also no
direct linguistic support for those constraint connectors, instead
they are present both in a non-executable architecture description
and conceptually in the code.

The architecture in question (see Listing [I) is shown again
graphically in Figure[5] with the solid arrows representing dataflow
constraints and the open arrow representing a one-time assignment.
The fact that this diagram is isomorphic to the textual representa-
tion in Listing [T] opens up the intriguing possibility of having a
meaningful boxes-and-arrows graphical representation [43] of the
overall architecture of interactive systems.

This architecture shows the large scale structure of the applica-
tion. It is not complete, but can be refined to be complete. The re-
minder of the section will demonstrate this refinement from overall
architecture to implementable components using the four top-level
components and three top-level connections of the application.

139

memory model

persistence

Figure 5. Overall Wunderlist Architecture

5.1 Memory-Model and Object References

The model component is implemented as plain Objective-C ob-
jects, for example WLTask representing a task and WLList rep-
resenting a list. These objects are stored and served from an in-
process REST server [51] implemented as nested dictionaries.

Objects are referred to using ObjectReference instance,
which correspond to URIs in the REST model. An object reference
(see Listing [I6) defines an access path to a specific object or set of
objects: wlstore:<entity>/container/<id>/object/<id>.
Every model object can also create an ObjectReference pointing
to itself.

Object references are structured and can be transformed. Re-
moving the object id yields a new object reference that refers to all
the objects in the same containing object as the original object, for
example the list a task was in.

@interface WLObjectReference NSObject
@property (mnonatomic,
@property (mnonatomic,

1

2

3 assign) wlid objectID;
4

5 @property (nonatomic,

6

7

8

assign) wlid containerID;
strong) NSString *entityType;

- (BOOL) isMatchedByReference: (WLObjectReference *)ref;

- (BOOL)matchesObject:(WLObject *)anObject;

Qend

Listing 16. WLObjectReference interface

Having an extensional representation of object references rather
than just object pointers makes it possible to refer to objects without
having the actual object at hand, for example because it doesn’t
exist yet, hasn’t been fetched yet or has been deleted. These object
references are also trivially serializable and can be used to derive
both disk addresses and web URISs, again without requiring an
actual object to be present.

With object references, every part of the system can easily
implement the GET part of the pull style constraint connector by
locally storing an object reference and issuing a GET to the in-
process REST server with that reference whenever necessary.

5.2 Notifications

The notification part of the constraint connector is implemented
throughout the system using a WLRESTOperationQueue. Each
WLRESTOperation consists of an object-reference (i.e. a URI) and
an operation (GET/PUT/POST/DELETE). It does not contain an
actual model object, because the purpose is only to notify clients
that there has been a change to the memory model and take appro-
priate action.



The application currently has three such instances of the class
WLRESTOperationQueue: one connecting the memory-model to
the UI, one connecting the memory-model to the persistent store
and finally one connecting the memory-model to the network inter-
face.

In each case the purpose is the same: the memory-model has
changed, please update the user interface, on-disk representation or
back-end with the new value. In each case, the target subsystem
then executes a subsystem-specific update method to effect that
change.

Notifications are buffered in order for the individual subsystems
to run on different threads and to account for the different speeds
of the subsystems. Only passing references and not the actual
data means that the target subsystem will always retrieve the most
current data from the in-process REST server, not necessarily the
data at the time the original notification was enqueued. This allows
the notification queues to prune duplicates, lessening the load on
the target subsystems.

5.3 Persistence

The simplest subsystem attached via a constraint connector is the
persistence component. It stores objects on disk as serialized JSON
files, with objects grouped into buckets defined by their parent
object (the container in the object reference). As an example, tasks
are stored in buckets defined by their list, subtasks or comments in
buckets defined by their enclosing task.

An independent actor is responsible for persisting objects to
disk. It is connected to the memory model via a one-way constraint
connector, shown in Figure [f] Whenever the memory model is
modified, it posts the object reference of the modified object to this
WLRESTOperationQueue.

persistence

notify
(serialize) | (coalesce)

Figure 6. Model = Persistence constraint

The queue is configured to remove the object-id from its in-
coming object references. This means the reference now no longer
points to, for example, a specific task, but rather the entire set of
tasks that belong to a list (but not the list object itself). Combined
with the uniquing performed by the queues, this leads to automatic
write-coalescing, both to combine writes to the same bucket and to
only write the most current version of an object that has multiple
changes.

The actor executes the update procedure by reading the object
reference, which now refers to a bucket, from the queue, fetching
a bucket’s worth of objects from the in-process REST server, seri-
alizing the objects to JSON and writing the result to a file whose
name is derived from the object reference. At the end of the up-
date procedure, the dataflow constraint is satisfied again: the on-
disk representation matches the memory model.

The memory-model does not need to know about the persistence
mechanism, apart from publishing “changed* notifications to its
notification queue.

Reading from disk is done independently and lazily at startup,
so there is no constraint connector from persistence to the memory
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model. We do not expect outside processes to alter the persistent
store.

5.4 User Interface

The constraints between user interface component and model
(shown in Figure [8) are more complex than for the persistence
component. First, the user typically also wants to be able to make
modifications, so in addition to the pull-based constraint going
from model to ui, there is a push-based constraint going from ui
to model. In both cases, only the UI has a direct reference to the
model, the model once again only publishes “changed notifica-
tions.
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Figure 7. Principal Wunderlist UI Elements

The Second complication is that the user interface component
is a composite, consisting of many individual subcomponents. The
full detail of the user interface is beyond the scope of this paper,
but the major subcomponents are the following, shown left to right
in Figure [7} the sidebar that shows all the task lists, a list view
that shows all tasks in a single list and finally a detail view that
allows viewing and manipulation of a single task. The views are
related among themselves via navigation/selection actions and to
the model via the same constraint connector indicated in the overall
model.

GET

PUT | notify

(redisplay)

Figure 8. Model <> User Interface Constraints

The connections shown in the overview (Figure [) distribute
over these components. With the addition of the selection/naviga-
tion actions connecting the views, this leads to the implementation-
oriented diagram in Figure[J]

Figure 0] is very detailed and difficult to parse, because the
constraint connectors are depicted as their constituent connectors,
which are always the same (parametrized by the specific object
reference). Figure[T0]simplifies the connection diagram by showing
the bi-directional constraint connectors as single double-headed
lines. Using the same symbol is justified by the fact that these are,
in fact, always variations of the same kinds of connector.

Similar to the connection to the persistence component, coa-
lescing is also used when notifying the UL. As with disk updates,



select task

task detail

GET

(redisplay) notify

task detail

sidebar

Figure 10. UI Components with Constraint Connectors

it makes no sense to update the UI either incorrectly with infor-
mation that is no longer current or redundantly with information
that was already displayed. In addition, both the Ul itself and the
human reading the UI have an ability to display/absorb changing
information at a rate that is much lower than the rest of the system
can generate, especially with the heavy use of animations in today’s
interfaces, which simply require a minimum time to display. On the
other hand, the requirements for update latency are very stringent,
so simply batching and delaying updates is also not acceptable.

Adapting the update coalescing mechanism described in the
previous section and making it dynamic solves the problem of com-
bining the requirements of low-latency and high-fidelity with the
ability to throttle down in order not to overwhelm the user inter-
face in high load situations: in low-rate situations, every store ref-
erence is passed through the update queue unchanged. Every time
an update notification is delivered to the UI, notification delivery is
halted for a small amount of time in order to give the UI a chance to
update, the user a chance to absorb the information and animations
the chance to finish.

During the time that delivery is disabled any further UI update
notifications accumulate in the notification queue, so the first up-
date is always immediate and delays only occur when the UI is
already busy. If the rate of change exceeds the ability of the UI to
absorb the changes, the coalescing mechanism used in the persis-
tence connection is activated dynamically, with more and more de-
tail being removed from each object reference. With the reference
uniquing this will for example mean that update notifications for
several individual tasks in a list will be coalesced into a single up-
date for the entire list. If even that is insufficient to allow the UI to
catch up, coalescing is increased further until finally what remains
is only a blanket notification that something has changed and the
entire Ul needs to be refreshed.

Being able to use the same connector with only slight variations
in two seemingly very different situations came as a surprise to the
development team.

5.5 Network Communication

The network interface once again uses the same connectors, and
once again in slightly different variations and combinations. Inter-
nally, the same type of WLRESTOperationQueue is used to notify
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the network interface of changes to the model that need to be com-
municated to the backend.

More interestingly though, the actual network connection to
the backend is also a constraint connector, though this time one
implemented with HTTP and a WebSocket connection as shown in
Figure [T} The push/pull direction is reversed in this connection,
it is the model that is informed of changes in the backend via a
WebSocket connection and then uses an HTTP GET operation to
fetch the updates. The push constraint is for sending updates to the
server.

backend

notify

(websocket) HTTP PUT

Figure 11. HTTP/Websocket based constraint connector

If the WebSocket fails, the notification part of the constraint
connector is replaced by polling via HTTP.

Another difference that is beyond the scope of this paper is
that the GET part of the constraint connector is asynchronous in
this case, due to the high and unpredictable latencies of network
operations.

This is by far the most complex constraint connector, with the
implementation trying very hard to optimize both bandwidth and
latency, yet in terms of interface it looks identically to the other
constraint connectors.

5.6 Discussion

In building Wunderlist, we discovered that variations of con-
straint connectors turned out to be fundamental application building
blocks, not just conceptually and architecturally, but also in terms
of the reusable capabilities they provided to the application.

One lesson was the importance of being able to use different
types of constraints (for example push evaluation vs. pull evalua-
tion) as needed, as well as being able to vary the implementation of
parts of the constraint connectors, particularly the notification part.

Another important enabler was the use of Polymorphic Iden-
tifiers as flexible, non-pointer based object references. These ob-
ject references made possible both the in-process REST server that
serves as the source of the GET part of the pull-evaluated con-
straints as well as the notification queues that complete the con-
straint connectors.

These mechanisms by themselves have been tremendously help-
ful in building a high quality, responsive application and keeping
the code simple, factored and compact. The realization that these
component parts make up constraint connectors has opened up
many more avenues for simplification and streamlining.

6. Related Work and Future Directions

Although there has been a lot of work on using programming to
solve constraint problems, there hasn’t been nearly as much on
using constraints to solve programming problems. For example,
the Module System for Constraints in Smalltalk [21] does not use
constraints to enhance Smalltalk modularity, but instead creates a
module system to make constraint evaluation more efficient.



We view constraints as structured programming for variables,
making it possible to capture and declaratively specify higher level
interactions with or between variables than just load and store.

6.1 Software Architecture and Modeling

Various publications on software architecture, including the semi-
nal Software Architecture, Patterns of an Emerging Discipline [44]],
Taxonomy of Software Connectors |30|, and Software Architecture:
Foundations, Theory, and Practive [46] contain what are consid-
ered to be comprehensive lists of connector types. None list a con-
straint connector, though they do list the constituent connectors
(data access, notification).

Clafer (class, feature, reference) [6] is a modeling language that
allows specifcation of both architectural meta-models and domain-
oriented feature-models as well as their combinations. As discussed
in section [.3] Listing[T|represents a meta-model of a certain class
of interactive applications, independent of their specific features,
with further refinement then adding the domain-specific features.
Transporting Clafer’s approach to integrating meta- and feature-
models from the modeling level to Objetive-Smalltalk’s imple-
mentation level seems like a promising approach for connecting
the high-level architectural descriptions to constraint-based or non-
constraint-based implementations. Clafer allows constraints on the
implementation to be specified and then checked via constraint
solvers such as Z3 [[15] or Alloy [26]. Having such similar mech-
anisms at different levels of abstraction is intriguing and possibly
opens up meta-circular definitions and implementations, further re-
ducing the gap between models and implementations.

Task models describe the logical activities that have to be car-
ried out in order to reach the users goals and allow user inter-
faces to be automatically generated from those models [§]. They
are complementary to constraint connectors in several ways: con-
straint connectors are mostly about the structure of implementa-
tions, whereas task models are more about modeling user fea-
tures, with implementations being (automatically) generated from
those models. Furthermore, task models describe goals that typi-
cally involve changes to the system state or requests for informa-
tion, whereas constraint connectors allow the system to return to a
steady states by enforcing invariants.

Bergman et al. [7] describe a system where task models are used
for specifying an application generically to run on different devices
and constraints used in the specification of those user interfaces.
Although constraint connectors are not primarily intended for lay-
out constraints, they could easily be extended in that direction (see
next section).

ArchJava [1]] is an extension to Java that claims to connect
architecture to implementation. While extending Java with con-
cepts such as components, connectors and ports and even allow-
ing custom connectors to be defined, ArchJava limits connectors to
be method-based, with ports specifying required and provided
methods in a fashion that is not much different from interfaces de-
clared by classes or required of instance variables. The addition
of broadcast methods on ports helps with the implementation
of the notification part of pull-based constraint connectors. Full-
fleged constraint connectors, however, connect via their constraint
variables and requires composition of primitive connectors, both of
which ArchJava cannot express.

6.2

Babelsberg [18] integrates a variety of solver libraries such as
Z3 [15] and Cassowary [5] with different existing programming
languages such as JavaScript, Ruby and Smalltalk. It allows the
the user to specify constraint problems directly in the host pro-
gramming language and then have those problems solved by the
libraries. The comprehensive integration between constraints and
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host imperative languages coupled with powerful solvers led to
sometimes surprising results, which required placing strict limits
on the solvers and the integration in order to make results more
predictable [19].

Constraint connectors don’t try to find solutions to potentially
under- or overconstrained computational problems, but focus on
the more tractable problem of maintaining system invariants using
simpler dataflow constraints, making them more suitable as a gen-
eral purpose programming mechanism. It would be interesting to
explore unifiying the mechanisms in order to have more complex
constraint solvers available where suitable, for example in order to
validate model constraints.

Kaleidoscope [22]] is a language with direct support for con-
straints. It features multiple object views and constraint construc-
tors for breaking user-defined constraints down into primitive con-
straints supported by the built-in solver. In Kaleidoscope, variables
determined by constraints must be slots of objects and defined us-
ing the solver. The use of Polymorphic Identifiers allow constraint
connectors to define arbitrary resources, including external files or
web resources, and constraint implementations are not limited to
the abilities of a specific solver. It is unlikely that Kaleidoscope’s
constraints would have been expressive enough to implement the
network-based connector in Section[5.3]

6.3 Constraints in Graphics and UI

Whereas software architecture focuses on the communication be-
tween and connection of components, constraint programming has
been concerned primarily with solving computational problems
such as graphical layout, starting with what is said to be the very
first constraint solver, Sutherland’s 1957 Sketchpad [45] system,
which allowed the user to specify constraints between graphical
objects.

As an example, a square was defined as four lines that are
constrained to be the same length, perpendicular to each other
with certain shared points. Sketchpad then used a relaxation based
solver to come up with the square solution to these constraints.
Although very powerful,it is unclear whether this constraint-based
description of a square is more useful than a simple procedural one.

Almost four decades after Sketchlab, the paper describing
the Cassowary linear constraint solver for user interface appli-
cations [5] used constraints to demonstrate Varignon’s theorem:
connecting the midpoints of any quadrilateral forms a parallelo-
gram. Again, the power of a multi-way solver for linear constraints
seemed overkill, a simple InsetQuadrilateral object could eas-
ily compute the required points and their connecting lines procedu-
rally without resolving to complex constraint solving methods.

These and other examples led to the conclusion that for many
examples of constraints, the usefulness lay not so much in their
computational abilities, but rather in the fact that they could cre-
ate new abstractions by describing relationships between existing
abstractions without having to modify those abstractions.

Experience reports about the work on the Garnet and Amulet
constraint toolkits [47] were extremely helpful in shaping con-
straint connectors. The influences are too many to list completely,
one example is the difficulty with both DSLs (too restricted) and
general purpose languages (cumbersome syntax for constraints),
which led to our approach of co-evolving a general purpose lan-
guage with the constraint connector mechanism in order to achieve
good semantic and syntactic integration (almost DSL-like) without
sacrificing generality.

The authors also report the relative unimportance of the spe-
cific constraint solving algorithm, which ultimately led to another
central feature of the constraint connector mechanism: allowing di-
verse constraint update mechanisms, which then led to the applica-



bility of the technique to non-layout tasks, which the authors found
difficult.

Apple incorporated the Cassowary linear constraint solver as
the standard view layout mechanism into both Mac OS X and
i0S under the name of Autolayout [2]. In addition, OS X supports
a simple dataflow constraint binding mechanism under the name
Cocoa Bindings [4].

Both systems suffered from problems of missing linguistic in-
tegration, leading to verbose and unwieldy APIs that have to spec-
ify equations as method arguments with enums or strings. List-
ing is the equivalent of the following simple arithmetic con-
straint: button.width |= 0.5 * superview.width + 3.0.

NSLayoutConstraint constraintWithItem:button
attribute:NSLayoutAttributeWidth
relatedBy:NSLayoutRelationEqual
toltem: superview
attribute:NSLayoutAttributeWidth
multiplier:0.5 constant:3.0.

Listing 17. Specifying an Autolayout constraint in code

In addition to syntactic issues, Autolayout also turned out diffi-
cult to use due to the usual problems of over- and under-constrained
constraint systems leading to surprising solutions, so much that Ap-
ple later had to introduce a simpler box-layout mechanism on top.

Continuing the theme of integrating results from research and
industry and potentially building on further work integrating more
complex solvers (Section [6.2), generalizing constraint connectors
to interface with and/or supplant Autolayout and Cocoa Bindings
could be a very interesting avenue for future work.

(If bi-directionality were desired, the =|= connector could also
be used for the layout constraint, but see Section [6.3] below). An-
other useful addition would be to expand on the work on visual
constraint debugging [49]] and apply it too all of these areas.

Constraints as a Design Pattern [41]] addresses the predictabil-
ity and integration issues by treating constraints as programming
elements that can be flexibly integrated with regular programming.
Like constraint connectors, the top-level architecture of applica-
tions is described using constraints and these can then be imple-
mented in different ways. However, it still focuses on computation
(components) rather than architectural connection, and on the al-
gorithmic problems of user interface programming rather than the
problems caused by architectural mismatch.

Interstate [38] defines a visual and tabular language with con-
straints and state machines specifically for user interface program-
ming. It uses a fixed constraints solver that neither permits the vari-
ation in notification mechanisms we found useful in Wunderlist,
nor is it capable of dealing with non-object resource types.

6.4 Spreadsheets Constraints

The one-way dataflow constraints used in Garnet and Amulet are
also referred to as “spreadsheet constraints”, because the way they
automatically update all dependent calculations is effectively the
same as an electronic spreadsheet [48] [47]. Although constraint
connectors can use multiway constraints, these are used in a styl-
ized fashion that reduces to sets of one-way constraints with cycle
detection.

The success of spreadsheets as an end user programming tech-
nology where so many others have failed is attributed in part to the
computational model that shields the user from many low-level de-
tails including control flow, the immediate visual feedback in the
two-dimensional grid and the motivational factor from achieving
real results in a few hours [35].

The fact that many if not most of the applications of spread-
sheets are not for graphical layout of user interface layout also
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seems to contradict the findings by vander Zanden on the scope
for the use of spreadsheet constraints being limited to Ul layout.

The attraction of combining the direct appeal, productivity and
end-user success of spreadsheets with general purpose program-
ming (languages) is obvious, and there have been many attempts
to combine the two. Among these the Analyst Spreadsheet [40]
allowed arbitrary Smalltalk expressions in every spreadsheet cell
(identifiers extended with the ability to locate cells) and in turn
allowed arbitrary Smalltalk objects to be displayed as a result,
whereas the dataflow language Lucid was extended to create a 3D
intensional spreadsheet [[17]].

An interesting research question would be whether having a
spreadsheet-like constraint mechanism that removes a lot of low-
level details (see Section ) not just available as a built-in language
mechanism (rather than as a bolt-on), but also widely used in the
system (see the previous section), could significantly reduce the
semantic gap and make end-user programming more feasible. A
related question is whether having both constraints and polymor-
phic identifiers turns a spreadsheet from a complex application to a
simple library, and whether that could also lower the semantic gap
compared to having either special-purpose formula languages or
general purpose formula languages that do not intrinsically support
spreadsheet constraints.

6.5 Bidirectional Programming

In section 4} we used plain imperative expressions as the up-
date procedures, forcing us to specify two uni-directional update-
procedures |= for the temperature conversion, whereas simple
equality constraints could be specified using the bi-directional
constraint connector =|=. Thinglab [12]] instead composed more
complex formulae from primitive bi-directional constraints such as
multiplication (with a constant) and addition (of a constant), which
automatically resulted in a bi-directional constraint with only one
formula specified, but limits expressible constraints to ones that
can be constructed with the pre-defined library. Cassowary restricts
constraints to linear equations and inequalities, which are naturally
bi-directional.

Sticking with advice from the Garnet/Amulet team, we decided
to use update procedures having the full power of the imperative
base language in order to preserve general applicability, which pre-
cludes automatic bi-directionality because not all update proce-
dures can be inverted

Since we are co-evolving the language with the constraint sys-
tem, we do have the option of revising this decision in the fu-
ture, and the =|= syntax makes it possible for users to demand
bi-directional evaluation. The system can then attempt to find or
construct an inverse, or select a solver that can accept bi-directional
constraints (such as Cassowary) and verify that the formula is suf-
ficiently limited for the solver to be applicable (linear equation or
inequality). If no inverse or applicable solver for the formula can
be found, the system signals a compile error.

Lenses provide an interesting general approach for expanding
the range of possible bi-directional expressions to tree transforma-
tions [20], relational algebra [9] and strings [10], with lens com-
binators to construct larger bi-directional transforms from primi-
tive ones. Basic lenses only deal with (bi-directional) update pro-
cedures, Parametric lenses [[16] add notifications in order to make
the system structurally very similar to dataflow constraints.

Lenses were billed as a possible solution the the View Update
Problem from database theory, which is the problem of reflecting
updates made on a view of a database correctly back to the underly-
ing database. “In summary, our theorems show that there are very
few situations in which view updates are possible—even fewer, in
fact, than intuition might suggest.” [[14]].



7. Summary and Outlook

We have demonstrated selected problems caused by the archi-
tectural mismatch between current programming languages and
the architecture of interactive applications. We showed that using
dataflow constraint connectors can elegantly solve some of these
problems, and that direct linguistic support for these connectors is
very helpful.

Directly expressing these constraint connectors in code has the
potential for bringing architecture and implementation for certain
systems much closer than they are today, as well as bringing niche
applications of constraints such as Ul layout or build systems into
the mainstream of programming. In addition, end-user program-
ming might benefit from reducing the semantic gap between suc-
cessful technologies such as spreadsheets and the difficulties of
general purpose scripting and programming.

However, the polymorphic nature of these connectors means
that direct linguistic support, i.e. built in support for some specific
type of constraint is not sufficient. Instead, we need to take one
step up the abstraction ladder and provide support for adding user-
defined connectors and turning them into first class abstraction/de-
composition mechanisms on par with built-in mechanisms such as
procedure calls or message sends.

In fact, just like pure object-oriented languages discarded the
notion of built-in concrete data types except as an implementation
expedience, a pure architectural language would probably discard
the notion of built-in connectors, conceptually treating all connec-
tor types (procedure call, assignment, message send, constraint,
etc.) equally
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